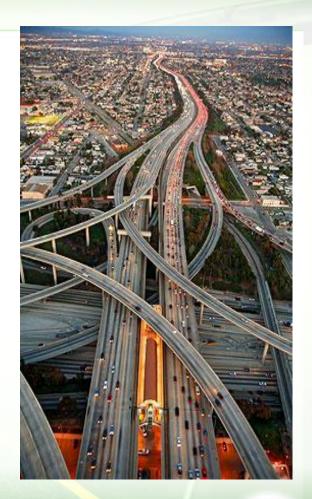
XXIVth WORLD ROAD CONGRESS Mexico City 2011

LIFE CYCLE ASSESSMENT THROUGH A COMPREHENSIVE SUSTAINABILITY FRAMEWORK: A CASE STUDY OF URBAN TRANSPORTATION VEHICLES

Lambros K. Mitropoulos

University of Hawai'i, Manoa


PhD Candidate

lampros@hawaii.edu

OUTLINE

- Introduction
- Objectives
- The Sustainability Framework
- Light-Duty Vehicles
- Life Cycle Results
- Rankings
- Next Steps
- Contribution

INTRODUCTION (1/2)

Common transportation mode evaluations are based on:

- Demand and supply comparisons
- Cost / benefit evaluations
- Financial risk analysis
- Cost-effectiveness analysis
- Detailed energy requirements and pollution emissions
- Ignored or internalized cost of accidents

INTRODUCTION (2/2)

Problems with current approaches?

- Major components of sustainable transportation are omitted in this approach
- Only personal vehicles are considered
- Modes present on a section of a corridor are accounted for using aggregate measures
 - Average speed
 - Total vehicle emissions
 - Total fatalities

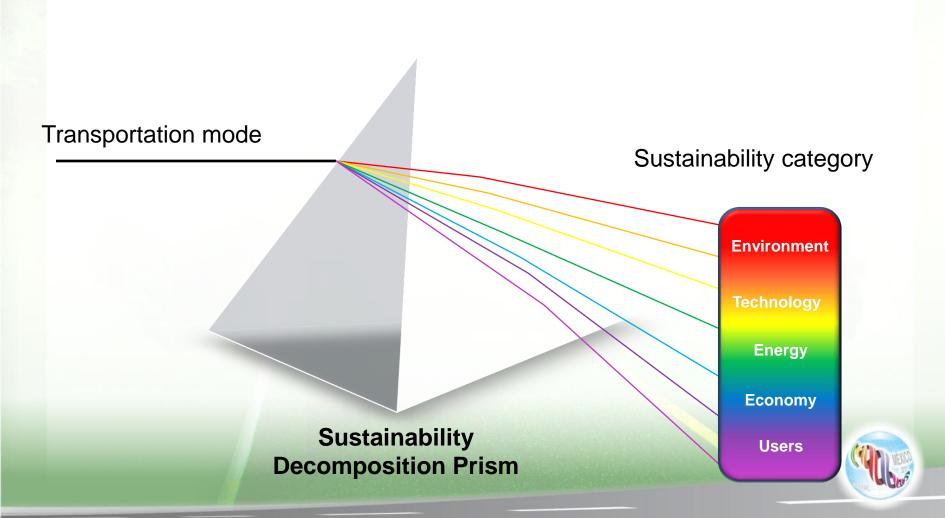
OBJECTIVES

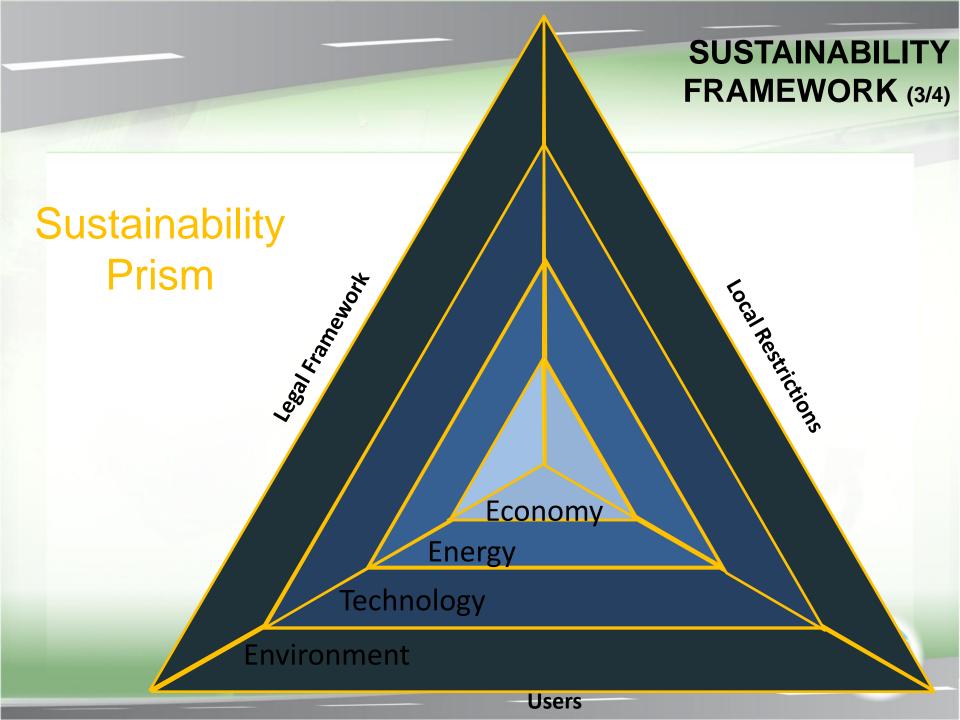
 Create a life cycle framework that can be used by decision makers to incorporate sustainability into urban transportation planning

 Propose estimable criteria and indicators that cover the spectrum of sustainable transportation and make feasible the comparison between different vehicles (or technologies, corridors, etc.)

SUSTAINABILITY FRAMEWORK (1/4)

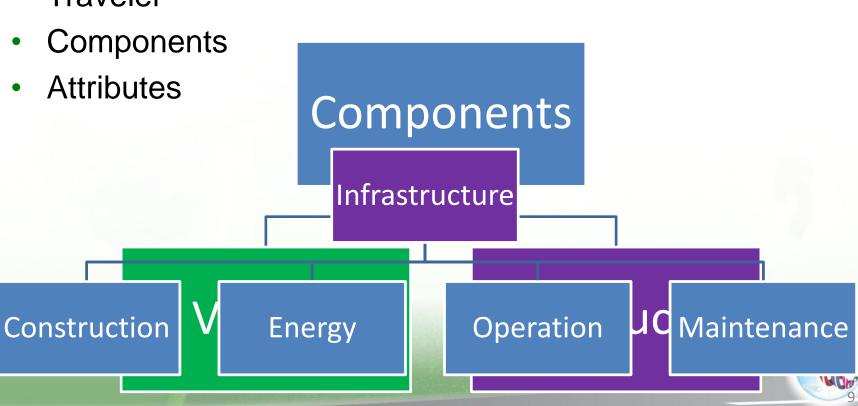
The 4 layers:


- Environment
- Technology
- Energy
- Economy


The 3 controllers:

- Users (and other stakeholders)
- Legal framework
- Local restrictions

SUSTAINABILITY FRAMEWORK (2/4)



SUSTAINABILITY FRAMEWORK (4/4)

Urban transportation mode

- System operator
- Traveler

	1. Users											
Manufacture	Fuels	Operation	Maintenance									
		Mobility										
		Demand (pass/veh)										
		Vehicle breakdown										
		Safety										
		Coomfort										

2. Legal framework										
Manufacture	Fuels	Operation	Maintenance							
Stringent	Stringent	Stringent	Stringent							
Adaptability	Adaptability	Adaptability	Adaptability							
Jurisdiction	Jurisdiction	Jurisdiction	Jurisdiction							

3. Local restrictions									
Manufacture	Fuels	Operation	Maintenance						

				1																	
			Component	a. Vehicle																	
1			Emissions	Manufac	ture F	Fuels	Operati	ion	Mainten	ance											
	Manufacture	<u> </u>	CO ₂								nce										
	Emissions		SO ₂								e										
	Noise		<u>co</u>								ai										
	INDISE	<u>с</u>	NO _x								.cy										
	Safety	p u	pu	p u l	p u l	p u l	p u l	p u l	p u	pu	l n d i	i p d i	VOC								
	% Reused,		PM ₁₀																		
	Recycled																				

	c. Energy											
Manufacture	Fuels	Operation	Maintenance									
% Energy source	% Energy source	% Energy source	% Energy source									
Materials	Explore, produce, transfer	Consumption	Materials									
Assembly			Assembly									

	d. E	conomy	
Manufacture	Fuels	Operation	Maintenance
Cost	Cost to produce, secure, transfer	Cost	Cost
Public subsidy	Safety cost	Tax revenues	Public subsidy
Safety cost	Job opportunities	Public subsidy	Safety cost
Job opportunities		Safety cost	Job opportunities
		Job opportunities	
		Property damage	

LIGHT-DUTY VEHICLES

- Int. Combustion Engine Vehicle (ICEV) Toyota Camry
- Hybrid Electric Vehicle (HEV) Toyota Prius
- Fuel Cell Vehicle (FCV) Honda Clarity
- Electric Vehicle (EV) Nissan Leaf
- Plug-In Hybrid Vehicle (PHEV) Chevrolet Volt
- Gasoline Pickup Truck (GPT) Ford F-150
- Diesel Bus (DB) New Flyer (40 ft.)
- Bus Rapid Transit (BRT) New Flyer (60 ft.)

LCA TOOLS

- Economic Input-Output Life Cycle Assessment (EIO-LCA) – Carnegie Mellon University
- Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET 1.7,2.7 – Argonne National Laboratory
- MOBILE 6.2 Mobile Source Emission Factor Model U.S. EPA
- Various sources for vehicle characteristics and quantities

LIFE CYCLE RESULTS (1/5)

Present Analysis: 5 Sustainability Category 5 Sustainability Categories 32 Sustainability Indicators

Sust.	Goals	Criteria	Indicators	Units	ICEV	HEV	FCV	EV	PHEV	GTP	DB	BRT
Category	Goals	Criteria	mulcators	Units	Camry	Prius	Clarity	Leaf	Volt	F-150	Newflyer	Newflyer
	Minimize GHG Global		CO ₂ (w/ C in VOC & CO)	grams/ PKT	246	132	115	154	171	364	202	78
		GHG	CH ₄	grams/ PKT	0.34	0.20	0.35	0.24	0.19	0.52	0.16	0.06
	Warming		N ₂ O	grams/ PKT	0.01	0.01	0.00	0.00	0.01	0.01	0.00	0.00
t	Total GH	Total GHG	GHGs	grams/ PKT	257	138	124	161	177	380	210	82
Environment			VOC	grams/ PKT	0.42	0.38	0.03	0.03	0.38	0.80	0.14	0.07
nviro			со	grams/ PKT	0.48	0.44	0.18	0.19	0.28	0.87	0.55	0.26
ш	Minimize Air	Air Quality	NO _x	grams/ PKT	0.40	0.34	0.11	0.18	0.33	0.73	0.64	0.28
	Pollution		PM ₁₀	grams/ PKT	0.08	0.07	0.08	0.22	0.07	0.14	0.04	0.02
			SO _x	grams/ PKT	0.15	0.17	0.18	0.45	0.19	0.24	0.15	0.08
	Minimize noise	Noise	Average noise level	dB	61	57	57	57	57	69	78	78

LIFE CYCLE RESULTS (2/5)

Technology Category

Sust.	Coolo	Cuitouio	Indicators	l lucito	ICEV	HEV	FCV	EV	PHEV	GTP	DB	BRT
Category	Goals	Criteria	mulcators	Units	Camry	Prius	Clarity	Leaf	Volt	F-150	Newflyer	Newflyer
Technology	Maximize lifetime service	Vehicle lifetime	Estimate average vehicle lifetime	years	10.6	10.6	15	15	15	9.6	12	12
	Maximize capacity of vehicle in the unit of time	Capacity	Accomplishment compared with the max. capacity of vehicle class	Percent- age	100%	100%	80%	100%	80%	100%	92%	99%
	Fuel frequency Minimize		Estimate time loss for fueling vehicle	minutes/ PKT	0.006	0.004	0.008	0.011	0.006	0.006	NA	NA
Tech	time losses	Maintenan- ce freq.	Estimate time loss for maintaining vehicle	minutes/ PKT	0.010	0.009	0.003	0.003	0.003	0.012	0.002	0.001
	Minimize land consumption	Space occupied	Estimate land occupied by vehicle	square meters/ pass.	5.5	4.9	5.6	4.9	4.9	7.3	3.0	2.0
	Maximize power	Engine power	Torque-weight ratio	Nm/kg	0.151	0.103	0.158	0.177	0.216	0.165	0.095	0.049

LIFE CYCLE RESULTS (3/5)

Energy Category

Sust.					ICEV	HEV	FCV	EV	PHEV	GTP	DB	BRT	
Category	Goals	Criteria	Indicators	Units	Camry	Prius	Clarity	Leaf	Volt	F-150	Newflyer	Newflyer	
Energy	Minimize energy consum- ption	Energy Consum- ption	Manufa- cturing Energy	Mjoule/ PKT	0.302	0.318	0.360	0.359	0.333	0.568	0.186	0.181	
				Fueling Energy	Mjoule/ PKT	0.565	0.247	0.566	0.887	0.245	0.845	0.297	0.102
			Operation energy	Mjoule/ PKT	2.207	1.124	0.829	0.650	1.564	3.767	2.237	0.774	
			Maintenance energy	Mjoule/ PKT	0.123	0.117	0.081	0.081	0.083	0.158	0.120	0.054	

LIFE CYCLE RESULTS (4/5)

Loo

Economic Category

Sust.	Cash	Cuitouio	Indicators	l luite	ICEV	HEV	FCV	EV	PHEV	GTP	DB	BRT
Category	Goals	Criteria	Indicators	Units	Camry	Prius	Clarity	Leaf	Volt	F-150	Newflyer	Newflyer
	Reduce		Manu- facture	\$/PKT	0.073	0.079	0.117	0.081	0.095	0.096	0.034	0.026
	cost require- ments	Cost	Operate	\$/РКТ	0.110	0.077	0.090	0.078	0.096	0.188	0.210	0.217
ž	ments		Maintain	\$/РКТ	0.021	0.021	0.012	0.012	0.013	0.027	0.027	0.012
	Minimize govern- mental support	Subsidy	Any form of subsidy	\$/PKT	0.000	0.000	0.019	0.019	0.019	0.000	0.168	0.074
	Minimize parking requir.	Parking Cost	Monthly expenditu- res for unreserved parking	\$/Pass.	101.6	101.6	0.0	0.0	0.0	108.4	0.0	0.0

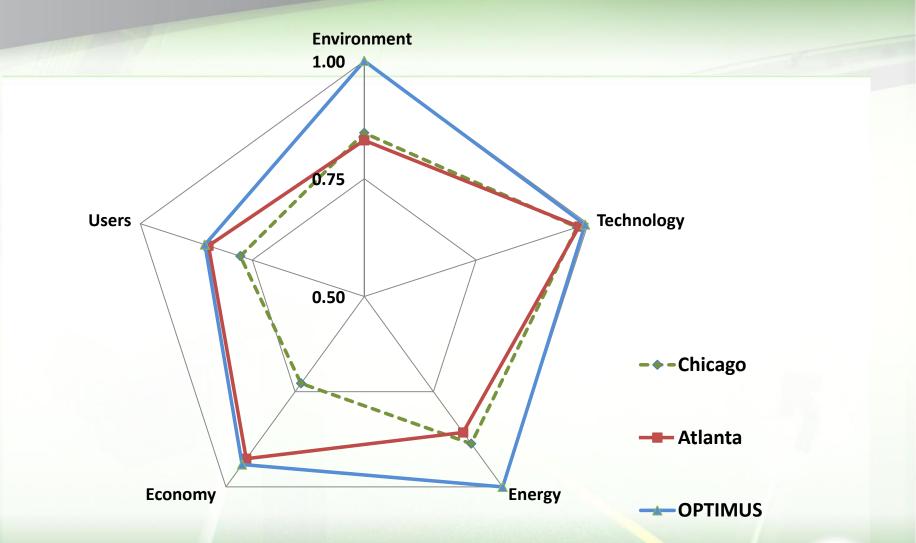
LIFE CYCLE RESULTS (5/5)

Users Category

Sust.	Cash	Cuitouia	la d'actana	11	ICEV	HEV	FCV	EV	PHEV	GTP	DB	BRT
Category	Goals	Criteria	Indicators	Units	Camry	Prius	Clarity	Leaf	Volt	F-150	Newflyer	Newflyer
		Demand	Mode share	% percentage	90.80%	90.80%	90.80%	90.80%	90.80%	90.80%	2.08%	0.24%
	Max. Transp. Perfor- mance	Global Avail.	% of time not available for user's usage based on 24h	hours of down time or not operable per year expressed as an annual %	0.03%	0.02%	0.04%	8.59%	1.29%	0.03%	20.83%	20.83%
		Reasona- ble Avail.	% of time not available for user's usage based on 19h	hours of down time or not operable per year expressed as an annual %	0.04%	0.03%	0.05%	3.10%	0.04%	0.03%	0.00%	0.00%
Users	Maxi. user comfort	and convenie-	Passenger space	liters/pass.	574.3	530.7	713.6	521.0	651.3	615.4	936.4	825.0
			Goods carrying (cargo) space	liters/pass.	84.95	122.33	92.74	69.09	75.04	522.92	52.39	52.39
		lice	Leg room front	centimeters	105.9	108.0	106.4	106.9	106.7	105.2	68.6	68.6
	Max. user confi- dence	Fueling opportuni ties	Locations for fueling/char- ging	Number of stations in operation	121,446	121,446	58	626	121,446	121,446	NA	NA

SUSTAINABILITY SCORES

Category	ICEV	HEV	FCV	EV	PHEV	GPT	DB	BRT
	Camry	Prius	Clarity	Leaf	Volt	F-150	Newflyer	Newflyer
Environmental	0.526	0.696	0.843	0.672	0.694	0.139	0.600	0.855
Technology	0.438	0.455	0.439	0.569	0.556	0.330	0.576	0.629
Energy	0.483	0.676	0.657	0.570	0.713	0.014	0.649	0.990
Economy	0.384	0.416	0.538	0.608	0.564	0.212	0.280	0.509
Users	0.428	0.430	0.374	0.217	0.438	0.512	0.252	0.228
Sustainability Index	45.2%	53.5%	57.0%	52.7%	59.3%	24.1%	47.2%	64.2%
Ranking	7	4	3	5	2	8	6	1


Overall Sustainability Ranking Based on Passenger Miles of Travel		
Bus Rapid Transit Diesel Bus New Flyer Articulated Bus		64%
Plug-in Hybrid EV GM Volt		59%
Fuel Cell Vehicle Honda Clarity		57%
Hybrid Electric Vehicle Toyota Prius		54%
Electric Vehicle Nissan Leaf		53%
Diesel Bus New Flyer Bus		47%
Internal Combustion Engine Vehicle Toyota Camry		45%
Internal Combustion Pickup Truck Ford F-150		24%

SUSTAINABILITY SCORES UPDATE

- Bus mass transit can aid in sustainability
- Introduced Car-Share with ICE and HEV... 8 → 10 in progress...
- Sustainability tool that can be applied in transportation networks or part of networks

2015 CITY COMPARISON

OPTIMUS = <u>Op</u>timal <u>Transportation Indicators for Modeling Urban Sustainability</u>

CONTRIBUTION OF SP METHOD

 It takes a well-to-wheel approach of modes instead of focusing only on the operation of modes

 It disaggregates modes instead of focusing on personal vehicles

 It explicitly assesses alternative fuels and propulsion technologies instead of focusing on fossil fuel powered modes

Thank you!

lampros@hawaii.edu pdp@hawaii.edu

University of Hawaii at Manoa Department of Civil and Environmental Engineering Traffic and Transportation Laboratory

