

XXIVth World Road Congress Mexico 2011 Mexico City 2011.

Use of Solar Heat-blocking Pavement Technology for Mitigation of Urban Heat

Masahiko Iwama

- NIPPO CORPORATION
- Research Engineer
- E-mail: iwama_masahiko@nippo-c.jp

Outline of Presentation

Background
Solar Heat-blocking Pavement

 Basic concept & properties

Laboratory evaluation
Application to various sites
Thermal sensation & Environmental effect
Conclusions

Background

Background

Urban areas and pavements in Japan

- Air temperature during summer has been increasing due to global warming
- Surface temperatures of asphalt pavement reach 60°C or higher in summer
- Asphalt surfaces cover approx. 20% of urban areas
- Pavement is a source of heat, similar to concrete structures

Environmental issues Hotter pavement:

- a factor in the "urban heat island "phenomenon,
- may affect the heath of pedestrians due to the much higher temperatures

Public demand to reduce the temperature of road pavement

What is solar radiation?

- Solar radiation mainly consists of visible rays and nearinfrared rays; plus some ultraviolet rays.
- 50% of solar energy is in the visible spectrum; the rest is in the near-infrared spectrum.

Basic concept

Solar radiation Low reflection for visible rays High reflection for near-infrared rays Apply high albedo and dark colored thin treatment materials Asphalt **Component of hot mix asphalt** Aggregate Highly reflective pigment Hollow ceramic particle

Basic concept

Highly reflective pigment

Highly reflective for near-infrared rays

 \rightarrow Prevention of heating

Low reflectivity for visible rays

 \rightarrow Enables various colors to be selected

Hollow ceramic particles

 Reflects solar radiation back into the atmosphere

Hollow ceramic particles (5~150 µm)

Albedo characteristics

Straight asphalt has a very low albedo

Dark-gray treatment materials have a low albedo for visible rays, but a very high albedo (about 90%) for near-infrared rays

Laboratory evaluation

Laboratory lamp test

Experimental temp.: 30°C

- Lamp height: A height at which the surface temperature of a conventional specimen reaches 60°C in about three hours
- Measurement method: Thermocouples

Inside of Temperature control cabinet

Laboratory lamp test

Skid resistance & permeability

		Porous Asphalt	Porous Asphalt with Solar Heat-blocking Pavement	
Skid resistance Dynamic Friction (µ)	40 km/h	0.60	0.	.62
	60 km/h	0.55	0.	.56
Permeability (cc/15 sec)		1,222	1,2	210

 The coating layer did not significantly affect the porosity of the asphalt surface

 Solar Heat-blocking Pavement can be applied to porous asphalt pavement without affecting its function

Application

Effect of temperature reduction

Mitigation of rut depth -Application to a taxiway-

Thermal sensation for pedestrians & Environmental effect

Thermal sensation - Thermographic image -

Conventional Pavement Solar Heat-blocking Pavement

Conventional Pavement Solar Heat-blocking Pavement

The surface temperature of the two pavements were significantly different

Thermal sensation - Questionnaire -

Experimental state

Six assessors

(i.e. three males and females in their 20's to 30's, respectively)

 Standing on both Conventional and Solar Heat-blocking Pavement <u>for three minutes</u>

 Ambient temperature: approx. 35°C

Environmental effect -Computer simulation-

 The result indicates that air temperatures in central Tokyo tend to decrease. Also, the air temperature is reduced by more than 0.8°C
The technology is highly effective for mitigating urban heat islands.

Conclusions

- The reduction in surface temperatures for solar heatblocking pavement is approximately 16°C.
- This technology can effectively reduce rutting, as the rate was approximately half compared to the dense-graded asphalt surface.
- It contributes to improving the thermal sensation around people's feet.
- Solar heat-blocking pavement is likely to be useful in mitigating the "urban heat island" effect, since atmospheric temperatures can be reduced by 0.8°C

Application procedure

Stripping resistance test - test method Examines the adhesion between treatment materials and existing surface Loading condition:

Steering the front tires of a car to the **left** and **right**;

Test temperature: 20° C

Total load: 686 N;

Number of cycles: 650 times

Stripping resistance tests

Photo	Computer
Stripping area rate (%)	
Performance requirement	Less than 40%
Solar Heat-blocking Pavement	9.9%
Note: Stripping area rate = (stripping area/tire	e contact area) x 100

Weather resistance: QUV test

- QUV test simulates sunshine and rainfall
- Test duration: 400 hours/time;

• Temperature: $60 \pm 3^{\circ}C;$

- Time for water sprinkling: 18 min./120 hours ;
 Water pressure:
 - 1.0 kgf/m³

QUV test cabinet

QUV test results

	Test Time (h)	Solar Reflective Ratio (%)	Ratio of Weather Resistance (%)	Remarks
QUV	0	51.2	-	Initial Condition
	3,000	48.1	93.9	After Required Exposure

Note : QUV is in conformity to ASTM G-53

Solar reflective ratio is based on JIS A 5759

QUV for 3,000 hours is equal to exposure time of the 12 years and its weather resistance keeps approx.
94% of initial condition

Noise reduction

Measures the noise from tires and road surfaces
Uses microphone
The measurement was conducted at a speed of 50 km/h

Noise measurement vehicle

Noise measurement results

Noise level on Porous		Level	Level
asphalt surface		(Iwama <i>et al.</i>)	(Tomonaga <i>et al.</i>)
Specific Tire Noise dB (A)	Before coating	88.3	91
	After coating	87.9	90
	A year after coating	-	91

Porous asphalt surfaces with solar heat-blocking material retains its original performance level, despite the materials being coated on top of the existing porous asphalt surface.

Increase in patients suffering heatstroke

Influence of Thermal Impact

Porous asphalt pavement Solar heat-blocking pavement

Porous asphalt surface measured more than 51° C whereas solar heat-blocking pavement had a surface temperature of about <u>46.5</u>°C.

Thermal sensation - Surface temperature -

43.5°C

37.0°C

30.5°C

Original Image

Solar Heat-blocking Conventional **Pavement**

Thermographic Image

Solar Heat-blocking Conventional **Pavement** 48.3 °C 35.0°C

Thermal sensation - Temperature around feet-

Porous asphalt pavement

Solar Heat-blocking Pavement

Toyonaka *et al.* (2008): Journal of Hoso, Vol. 43, No. 6, pp. 31~36

> Toyonaka et al. concluded that S.H.P. can improve thermal comfort around our feet