XXIVth WORLD ROAD CONGRESS Mexico City 2011

A DYNAMICAL TIME-DOMAIN ANALYSIS FOR HEAVY WEIGHT DEFLECTOMETERS BACKACALCULATIONS

Michaël BROUTIN, Ph.D

- French Civil Aviation Technical Center
- Head of pavement testing research program
- michael.broutin@aviation-civile.gouv.fr

PLAN OF THE PRESENTATION

- Study framework
- Development of a dynamical mechanical modelling and associated backcalculation procedure
- Case studies and field validation
- Conclusions and perspectives

USUAL METHODS

Burmister multilayered elastic model (Alizé ; BakFAA) or MET (Rosydesign)

Calculation of deformations induced by static plate loadings

Identification performed using a « pseudo-static » basin

• Minimization of the function:

 $f(\vec{E}) = \sum_{k=1}^{m} q_k \left(w_k \left(\vec{E} \right) - d_k \right)^2$

LIMITATIONS OF THESE USUAL METHODS

They can lead to unrealistic results, since:

• They are based on static modelling which does not correspond to the observed physical phenomenon

• The identification of mechanical parameters is performed using the pseudo-static deflection basin. This leads to use only a few part of the available information (maximal deflection for each geophone)

STAC has interested to dynamic methods

DYNAMIC METHODS IN THE LITTERATURE

Frequency-domain methods ([Al Khoury et al., 2001]; [Grenier, 2007];...)

• Principle:

Spectral decomposition - analytical solutions - backcalculation - inverse FFT

• Weakness:

Roundtrip FFT/inverse FFT which can lead to significant errors [Chatti, 2004].

STAC chose to develop a time-domain method

MAIN OBJECTIVES OF THE STUDY

 To develop a dynamical pavement modelling for HWD data

 taking into account the dynamic nature of the load, the inertia effects and damping in the pavement,

• allowing the calculation of time-related deflections imparted to the pavement.

2) To propose an associated backcalculation automated procedure

MECHANICAL MODELLING AND ASSOCIATED BACKCALCULATION PROCEDURE

Multilayered linear elastic modelling + Rayleigh damping

- FEM modelling (CESAR software; [Piau, 1984]; [Humbert, 1989])
- External action: force history (measured by force sensor integrated in HWD foot)

TYPICAL RESULTS

Time-related surface deflections

Deflection [mm]

LOREM IPSUM DOLOR SIT AMET, CONSECTETUR **ADIPISCING ELIT.**

V U2

PARAMETERS

Known parameters

- Thicknesses (including depth to bedrock) + densities supposed to be known
- Poisson's ratio assumed

Parameters to be backcalculated

- Pseudo-static method: Young's moduli
- Dynamic methods: Young's moduli + damping

GAUSS NEWTON ALGORITHM

Problem: Finding $\min_{\vec{E} \in \mathfrak{R}^{n+1}_+} f_t(\vec{E}) = \sum_{st=st\min}^{st\max} \sum_{k=1}^m q_k \left(w_k(\vec{E}, st) - d_k(st) \right)^2$

Iterative process:

1) Initialization: choice of a seed moduli set: \vec{E}^{0} 2) Resolution at Nth step: $S^{N} \cdot d\vec{E}^{N} = \vec{R}^{N}$ with $S_{ij}^{N} = \sum_{st=st \text{ min}}^{st \text{ max}} \sum_{k=1}^{m} q_{k} \frac{\partial w_{k}}{\partial E_{i}} \frac{\partial w_{k}}{\partial E_{j}}$ and $\vec{R}_{j}^{N} = -\sum_{st=st \text{ min}}^{st \text{ max}} \sum_{k=1}^{m} q_{k} \left(w_{k} \left(\vec{E}^{N}, t \right) - d_{k}(t) \right) \times \frac{\partial w_{k}}{\partial E_{j}}$ In practice $\frac{\partial w_{k}}{\partial E_{j}} \approx \frac{w_{k} \left(E_{1}^{N-1}, \dots, E_{j}^{N-1} + \Delta E_{j}^{N}, \dots, E_{n+1}^{N-1} \right) - w_{k} \left(E_{1}^{N-1}, \dots, E_{j}^{N-1}, \dots, E_{n+1}^{N-1} \right)}{\Delta E_{j}^{N}}$

3) Updating parameters $\vec{E}^N = \vec{E}^{N-1} + d\vec{E}^N$ 4) Stopping of the process when $\|f_t(\vec{E}_N)\| \le e_0$ or $N \ge N_0$

CHOICE OF A TARGET ERROR (e₀)

Has relied on coupled results from repeatability and sensitivity study

$$U^{2}(f_{t}) = \sum_{k=1}^{m} \left(\sum_{st=st \text{ min}}^{st \max} \lambda_{k,st}^{2} U^{2}(d_{k,st}) \right) + \sum_{k=1}^{m} \left(\sum_{st=st \min}^{st \max} \lambda_{k,st}^{2} U^{2}(w_{k,st}) \right)$$

It is assumed that $w_k \approx d_k$ $U^2(d_k)$: obtained from repeatability study results

 $U^{2}(w_{k}) = \sum_{i=1}^{n} \sum_{st=st\min}^{st\max} S^{2}_{i,k,st} U^{2}(\rho_{i}) + \sum_{i=1}^{n} \sum_{st=st\min}^{st\max} S^{\prime 2}_{i,k,st} U^{2}(v_{i}) + \sum_{i=1}^{n} \sum_{st=st\min}^{st\max} S^{\prime 2}_{i,k,st} U^{2}(t_{i}) + \sum_{st=st\min}^{st\max} S^{\prime \prime 2}_{i,k,st} U^{2}(bd) + \sum_{st=st\min}^{st\max} S^{\prime \prime 2}_{i,k,st} U^{2}(x_{k})$

Also allowed to evaluate precisions attainable on backcalculated parameters

A NUMERICAL TOOL: THE PREDIWARE SOFTWARE (PAVEMENT RATIONAL EVALUATION USING DEFLECTIONS INDUCED BY FALLING WEIGHTS FOR AIRFIELD AND ROAD ENGINEERS)

Provides the possibility to:

- Automating the creation of a mesh and the associated CESAR data file
 - Accounting for aforementioned optimization rules
- Performing direct calculations for a given structure
 - Static or dynamic (applied force modelling) calculation
 - Surface deflections and/or critical strains
- Performing backcalculations
 - Pseudo-static or dynamic method
 - Dynamic case: with fixed or backcalculated damping

PREDIWARE: DYNAMIC FITTING

PREDIWARE – NUMERICAL VALIDATION

Direct calculation

1)

G1 G2 G3 G4 G5 🖬 Gô G7 <mark>G</mark>8 G9 24 Geophon case) without plate FUIZ - LCPC 258 203 169 122 58 38 220 86 PREDIWARE (Static without plate) 258 220 203 168 122 86 58 38 24 USING a selected common structure and a reference parameters set Considered stress Alize LCPC Comparison Of Surface deflection 55 and Strain 5 0.05 0.001 σ_{ZZ} (Top of S) 0.028 0.048 PREDIWARE Static without plate -1.159 0.0033 0.050 0.0281 0.0014

2) Backcalculation (test on simulated data set)

~		. Seed moduli sets					Backcalculated moduli sets (Stat)					Backcalculated moduli sets (Dyn)					
	Ų	<u>Asing</u>	AC2	UGA	G	S	AC1	AC2	UGA	G	S	AC1	AC2	UGA	G	S	
- Ref	a	1 se le	Cfeed	COM	mom	stra	cture	9000	200	150	120	4700	9000	200	150	120	
SMS2		4476	-10957	0 241	27342	$t - r^{138}$	4657	9211	192	157	119	4665	9088	200.04	150.04	120.02	
SMS3	9	1 81 2	12398				P4 677	9115	196	154	119	4938	8464	199.31	149.81	119.82	
- SMS4	9) rænc	O ABB	para	met€	rs s€	t\$65(41	192 9	phy	SICa	 y₁19€	easo	nab	€ 99. \$ €	inges)	119.96	
SMS5		2741	6691	255	205	38	. 464Ò	9292	189	160	118	4755	8871	199.87	149.94	119.96	
SMS6	C	Creati	O M30	f a s	imella	ted ⁹	lata	set	(นรศ	ng¹f€	efer€	nce	para	amete	ers se	(1) 19.95	
SMS7		2014	8236	280	192	79	4681	9080	` 197	0 152	120	4545	9383	200.43	150.18	120.11	
SMS8		Commo	ariso	on b€	etw ee	en ba	CKGS	al Gf el	ated	par	ame	teas	with	n re fe	rence	e dæta	I SE
SMS9		3443	7908	256	237	82	4682	9083	197	153	120	4688	9033	199.99	150.02	120.01	
SMS10	9	Same	VRADY	k der	form	ed in	±5707t	hors	eud)-\$®	atiœ≊		189942		24983	119.98	
Mean		4055	8291	258	226	93	4742	8880	203	149	121	4736	8914	200	150	120	
Std Dev		1450	3120	43	53	38	165	589	19	14	3	105	251	0	0	0	
Var		35.8%	37.6%	16.7%	23.6%	40.8%	3.5%	6.7%	<mark>9.5%</mark>	9.3%	2.9%	2.2%	<mark>2.8%</mark>	0.1%	0.1%	0.1%	

Validation means

1) Laboratory testing

- Asphalt materials: complex moduli tests $|E^*| = \sqrt{E_1^2 + E_2^2}, \quad \xi = Q^{-1} = \frac{1}{2} \times \frac{E_2}{E_1}$
 - Subgrade and untreated materials: resonant column tests [ASTM]

- 1) Gage measurements: feasability study on the LCPC's ALT facility
 - Development of a specific experimental protocol (which can be extended to the study every instrumented test facilities)

EXPERIMENTAL PROTOCOL

RESULTS ANALYSIS

Dynamic method provides:

- More robust than the pseudo-static method
- Better for deep layers than the pseudo-static method

For Both methods:

- Important discrepancy between backcalculated and expected values for asphalt layers
- Potential explanations:
- 1) Viscoelastic behaviour not taken into account
- 2) Damping modelling to be improved
- 3) Layer bonding ?

Conclusions

- A dynamical model has been developed
- Associated backcalculation
- A numerical tool has been created to automate calculations
- First backcalculation results are promising
- Nevertheless discrepancies with expected results for asphalt layers
- Next steps of work:
- Improvements of the model (viscoelasticity/damping/bonding)
- The STAC's test facility will be a priviledged validation tool

Strains sensors

STAC'S INSTRUMENTED TEST FACILITY

1) A validation tool of mechanical modelling

- To date: fitting of the model relies only on surface deflections.
- With the test facility : strain values are available at different critical levels in the structure.

2) A priviledged site for F/HWD (or other apparatus) crossed tests

3) An in-situ calibration site of material

- Deflection history measured thanks to deep anchors
- Force history measured thanks to test bench

Thank you for attention...

...and for further information:

Michaël BROUTIN PhD thesis:

 « Assessment of flexible airfield pavements using Heavy Weight Deflectometers; Development of a FEM dynamical time-domain analysis for the backcalculation of structural properties »; June 2010

http://www.stac.aviation-civile.gouv.fr/chaussee/ausc_hwd.php

