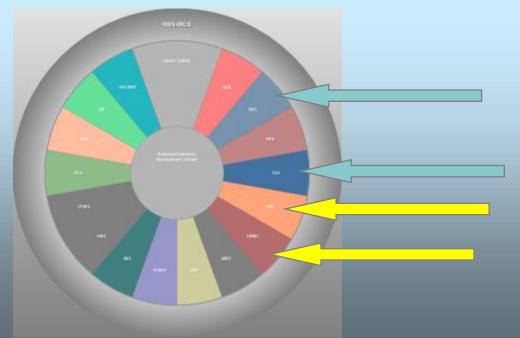
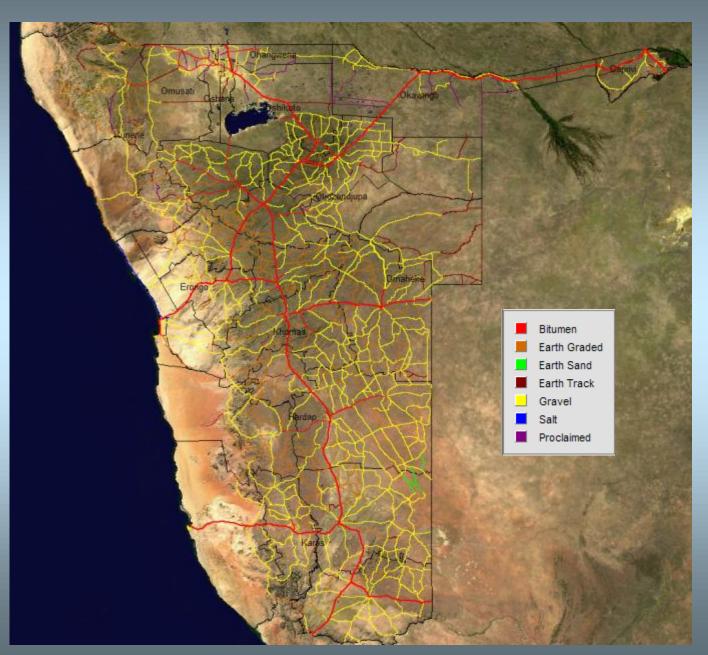

ROADS AUTHORITY OF NAMIBIA ROAD MANAGEMENT SYSTEM (2011) HDM-4 APPLICATION

Sophia Tekie RMS Manager

SCOPE OF PRESENTATION


- INTRODUCTION ON RMS OF NAMIBIA
- SUB-SYSTEMS AND RESULTS
 - □ PAVEMENT MANAGEMENT SYSTEM
 - ☐ UNSEALED ROAD MANAGEMENT SYSTEM
 - NETWORK INTEGRATION MODULE AND HDM-4
- RECOMMENDATIONS

INTRODUCTION


- RMS OF NAMIBIA DEVELOPED IN THE LAST THIRTY YEARS
- PURPOSE OF THE RMS
 - Record and update road infrastructure asset information
 - Assist the RA in strategic and tactical planning
 - Identification
 - Quantification
 - Prioritisation of projects
 - Budgeting.

MOST IMPORTANT SUB-SYSTEMS

- Road Referencing System (RRS)
- Traffic surveillance System (TSS)
- Pavement Management System (PMS)
- Unsealed Road Management System (URMS)
- Network Integration Module (NIM)

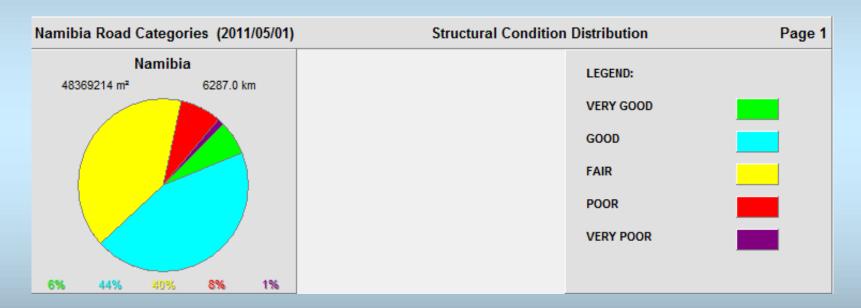
2. PAVEMENT MANAGEMENT SYSTEM

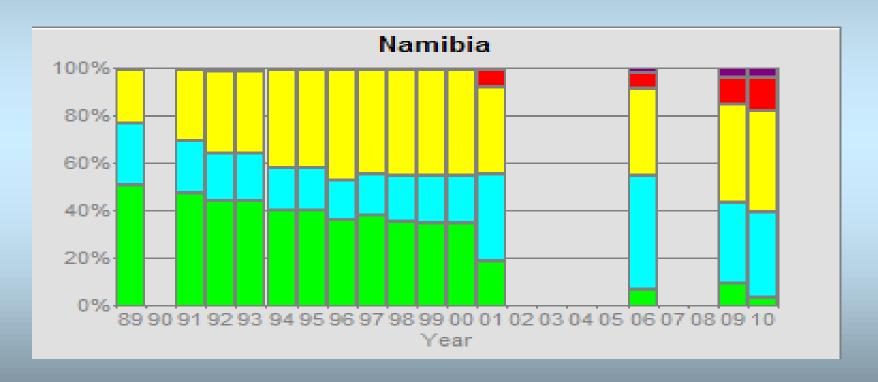
Current Network (7)

NETWORK 7		Trunk	Main	District	Proclaimed	Total
IAFIA		Roads	Roads	Roads	only	
Ritumen		4 135 7	1 945 8	305.8		6 387 3
Gravel		435.9	8 670 8	15 637 O		24 743 7
Salt		0.0	110.5	161.4		271.9
Farth	Farth Graded	0.0	363.5	10 693 0		11 056 5
	Farth tracks	0.0	77.2	1 359 6		1 436 8
	Sand Tracks	0.0	0.0	240 8		240 8
Total		4 571 6	11 167 8	28 397 6		44 137 0
Total includ	1 249 5	45 386 5				

Need Identification Systems

- Pavement Management System (Surfaced Roads)
- Unsealed Road Management System (Unsealed Roads)
- Bridge Management System (Structures)
- Network Integration Module
 - □ Combine total needs on existing network

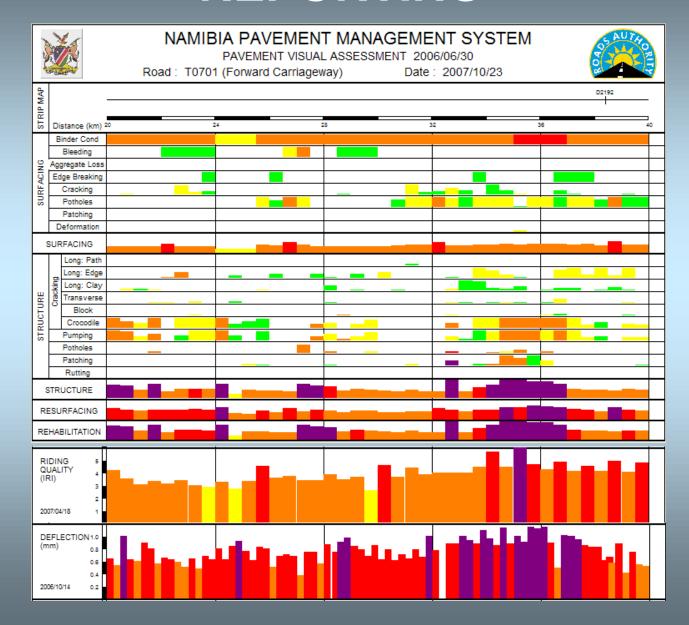

Condition assessment


ROADS AUTHORITY : NAMIBIA											
Visual Assessment : Surfaced Roads											
Road Number D0212 Date Date											
Carriageway	0	F B Assessor									
Position (km)		0.15	0	П	Climate			Dŋ	Dry Mod V		
CONDIT	ION			Degree						\neg	
Texture		VF	ഥ		Λ	С	VC	Var			
Binder		0	1	14	2	3	4	5			
Bleeding		0	1	14	2	3	4	5			
Aggregate Lo	SS	0	1	1.4	2	3	4	5			
Edge Breaking	9	0	1	14	2	3	4	5			
Riding Quality		0	1	**	2	3	4	5			
Skid Resistan	ce	0	1	2	2	3	4	5			
CRACK	ING			D	eg	ree			Exten	t	
Surfacing / Ha	ardening	0	1	12	2	3	4	5		m	
Longitudin: W	heelpath	0	1	14	2	3	4	5		m	
Longitudinal: 8	Edge	0	1	14	2	3	4	5		m	
Longitudinal: F	Random	0	1	14	2	3	4	5		m	
Transverse C	0	1	**	2	3	4	5		Nr		
Block Crackin	g	0	1	14	2	3	4	5		m	
Crocodile Cra	0	1	2	2	3	4	5		m		
DISTRE	SS			D	eg	ree			Extent	t	
Pumping		0	1	12	2	3	4	5		m	
Failures: Surf	acing	0	1	14	2	3	4	5		m	
Potholes: Stru	ictural	0	1	14	2	3	4	5		m	
Patching: Sur	facing	0	1	14	2	3	4	5		m	
Patching: Stru	ictural	0	1	14	2	3	4	5		m	
Deformation:	Surfacing	0	1	2	2	3	4	5		m	
Deformation:	Rutting	Ma	x dep	th	(m	m)				m	
GENERAL		С	onditi	ion	of	the S	Sampl	е			
Surfacing	V Good	Good		Fair		Poor		V Poor			
Structure	V Good	Go	Fair		Poor		V Poor				
ACTION Assessor's rating of Maintenance requirement											
Action Requir	None		Routine		Resurf		Rehab				
Urgency Ratin	No	ne	L	Lo	w	Med	lium	High			
COMPARE	Condition	n of th	ne se	cti	on	comp	ared	to the	e sample		
Surfacing	Much B	uch B Better Similar Worse Much W									
Structure	Much B	Bet	tter	,	Similar		Wo	rse	Much W	Ш	

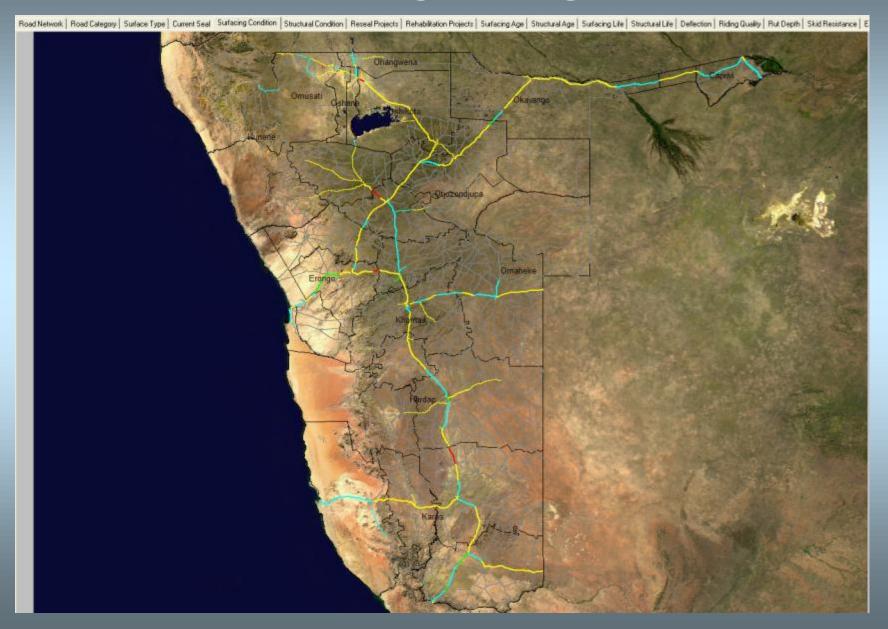
Condition description (pavement structures)

Condition trends (Pavement structures)

REPORTING

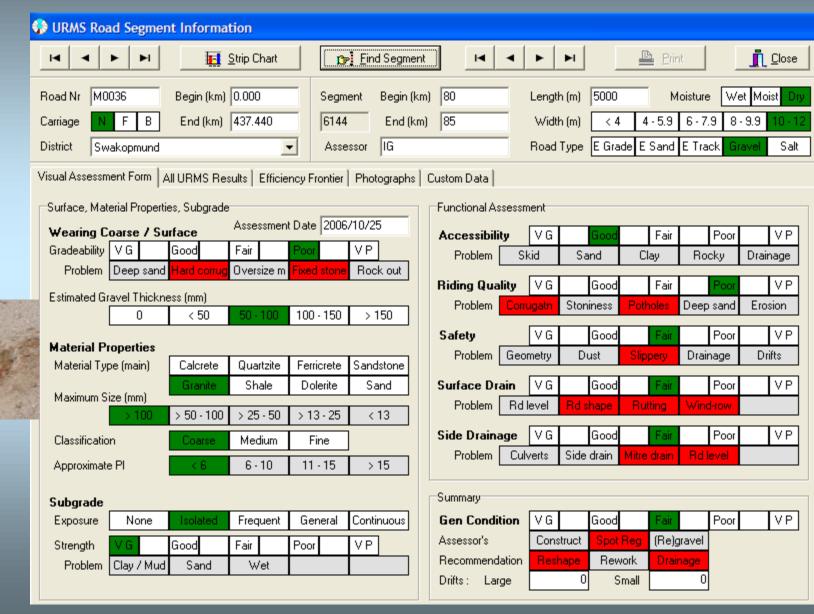

PAVEMENT MANAGEMENT SYSTEM

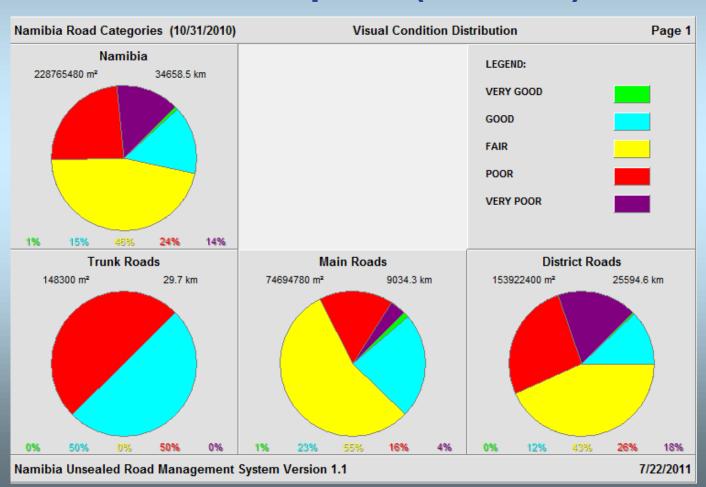
PAVEMENT ASSESSMENT (PHASE 2) NAMIBIA ROADS AUTHORITY



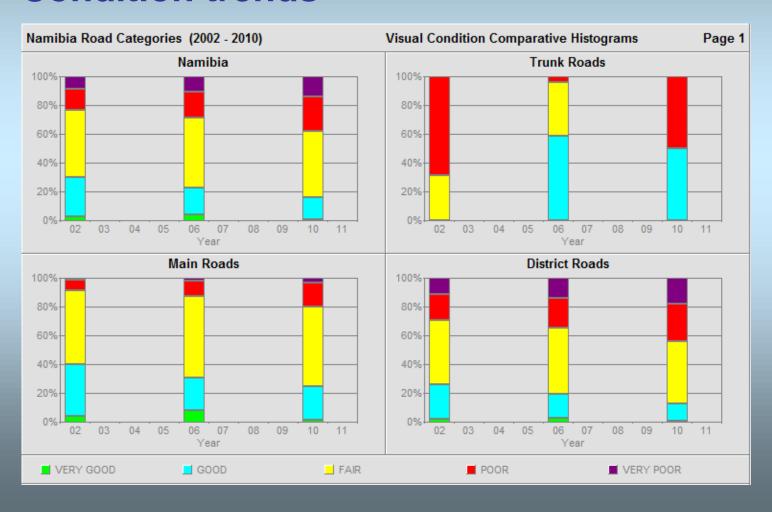
Road	Carriage	Saction	Section		Road	Length	Wath	Traffic	0	esurfacing Need		Resurfacing	Cost
Number	Wav	Begin (km)	End (km)	Maintenance Region	Cat	(km)	(m)	Class	1	Recommended Action	Year	Cost (N\$)	Total (NS
	way	0	117.76		T			2300/300	nidex 0	Seal			
T0108 T0401		0	84	Otjiwarongo Keetmanshoop	T	117.8 84.0	6.6 6.8	255/55	0	Seal Seal	1	24,680,531 20,520,107	24,680,53 45,200,63
T0501		1.5	51.62	Windhoek	T	50.1	7.4	230/30	0	Seal	1	13,999,748	59,200,38
T0803		82	103.5	Oshakati	T	21.5	8.0	400/100	0	Seal	1	4,853,206	64,053,59
T0804		61.5	73.5	Oshakati	T	12.0	7.5	285/65	0	Seal	1	3,721,028	67,774,62
M0052		1	22.7	Windhoek	M	21.7	13.6	370/20	0	Seal	1	9,673,862	77,448,48
M0031		0	30.5	Keetmanshoop	M	30.5	6.7	90/10	0	Seal	1	5,951,015	83,399,49
M0048		0	1.5	Windhoek	M	1.5	8.0	85/10	0	Seal	1	355,113	83,754,61
M0066		0	0.29	Windhoek	M	0.3	8.0	55/5	0	Seal	1	68,655	83,823,26
M0067		45.5	154.45	Criwarongo	M	108.9	8.0	135/5	0	Seal	1	27.698.119	111,521,38
M0069		157.87	161.04	Otiwarongo	M	3.2	8.0	40/10	0	Seal	1	750,471	112,271,85
M0070		0	14.88	Windhoek	M	14.9	8.0	140/15	0	Seal	1	5,079,669	117,351,52
M0084		0	35.19	Oshakati	M	35.2	6.2	135/15	0	Seal	1	10,342,297	127,693,82
D1210		0	2.23	Windhoek	D	2.2	8.0	315/15	0	Seal	1	527,934	128,221,7
D3611		0	5.51	Oshakati	D	5.5	7.0	237/22	0	Seal	1	1,138,545	129,360,30
D1010		0	0.54	Windhoek	D	0.5	7.0	68/8	0	Seal	1	111,582	129,471,8
D1103		0	0.2	Windhoek	D	0.2	8.0	22/2	0	Seal	1	47,348	129,519,2
D1228		55.28	56.6	Windhoek	D	1.3	8.0	65/5	0	Seal	1	312,499	129,831,72
D1280		0	0.1	Windhoek	D	0.1	8.0	70/10	0	Seal	1	23,674	129,855,40
D1526		0	1.61	Windhoek	D	1.6	6.4	110/10	0	Seal	1	303,844	130,159,24
D2440		0	1.75	Otjiwarongo	D	1.8	7.1	16/1	0	Seal	1	367,806	130,527,05
D3409		0	1.97	Oshakati	D	2.0	7.0	55/15	0	Seal	1	407,066	130,934,11
D3416		0	3.78	Oshakati	D	3.8	7.1	13/3	0	Seal	1	790,753	131,724,87
D3500		0	0.58	Oshakati	D	0.6	7.1	145/15	0	Seal	1	121,559	131,846,43
D3625		30.43	30.97	Oshakati	D	0.5	7.0	42/2	0	Seal	1	111,582	131,958,01
D3714		0	0.79	Otjiwarongo	D	0.8	7.3	15/5	0	Seal	1	170,702	132,128,71
Reseal Pr	ningt Drin	ritios		Page 1			Diameter al	l on 2007	/10/17		D\/r	S Version 1	2 M-J-1

REPORTING


REPORTING

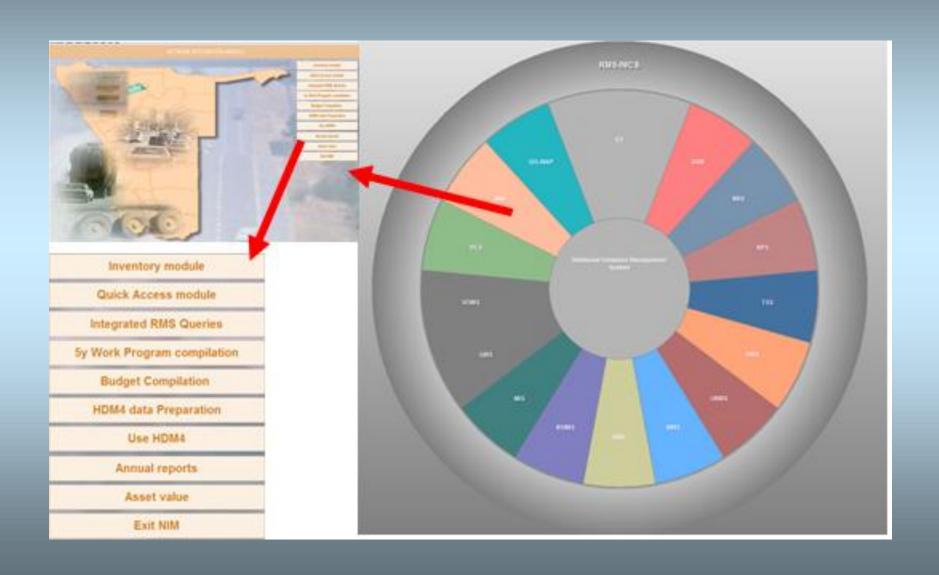

UNSEALED ROAD MANAGEMENT SYSTEM

- Unsealed road network
- Monitor condition and trends of deterioration
- Identifies and prioritises potential projects
 - Periodic maintenance measures
 - ■Potential surfacing/ upgrading
- Budget requirements
- Provides information
 - Reports
 - ☐ Graphs
 - Maps

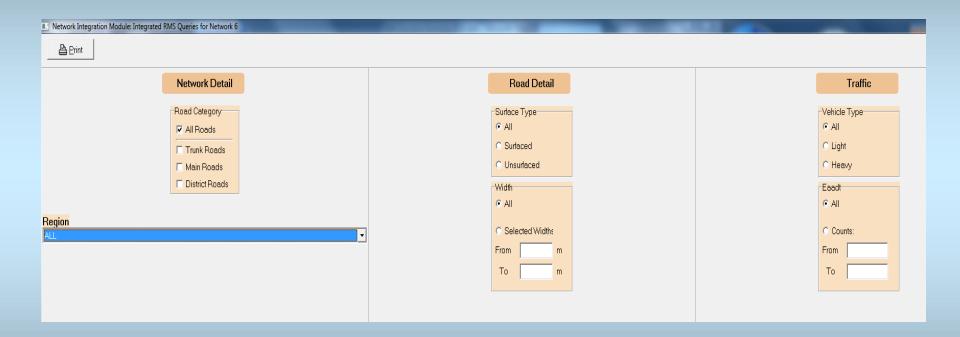

Visual Assessment (5km)

Condition description (Network)

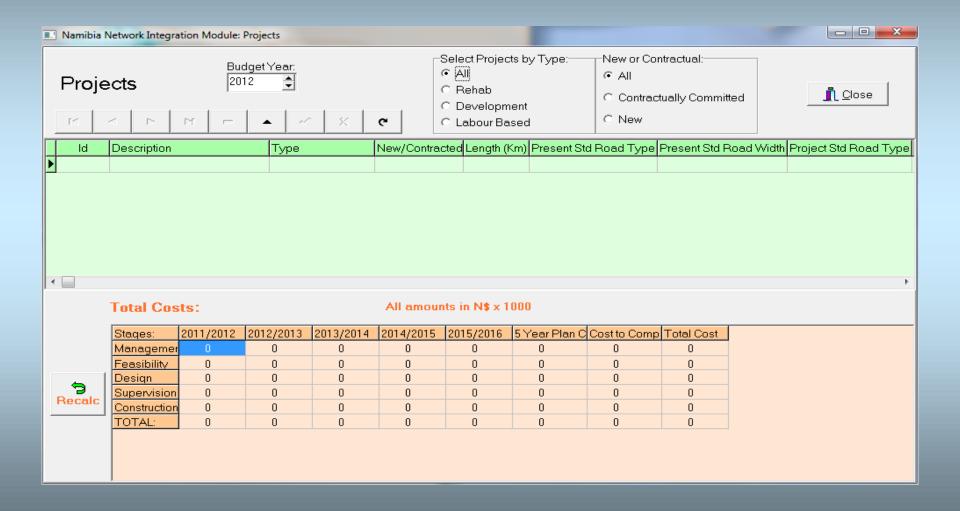
Condition trends

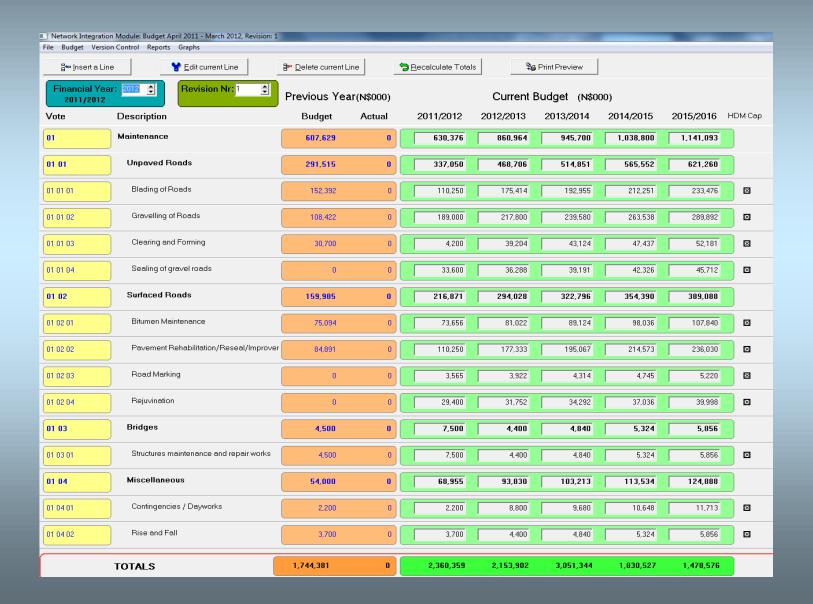

URMS SUMMARY

Routine Maintenance Blading (N\$)	Routine Maintenance Ancillary(N\$)	Scheduled Maintenance (N\$)	Sealing of gravel roads (N\$)	TOTAL (N\$)
181 000 000	125 000 000	525 061 000	180 000 000	1 011 061 000

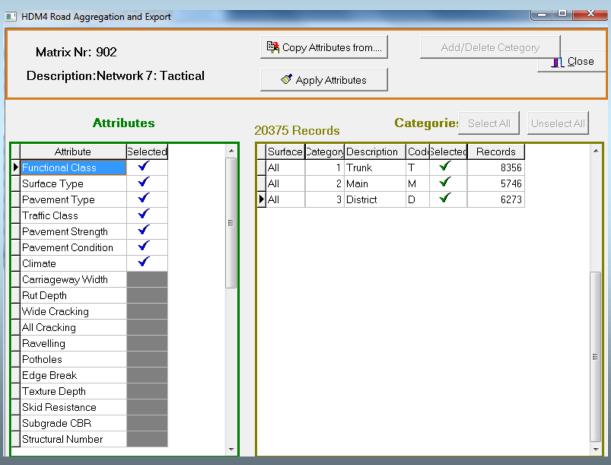

Network Integration Module

- Use HDM for Strategic analysis
- Easily access management outputs from the various RMS sub-systems
- Enter and update annual budget details
- Run integrated queries on the road network
- Enter and manage the five-year work program
- Provide access to annual reports
- Calculate and monitor the road network asset value (not functional yet)

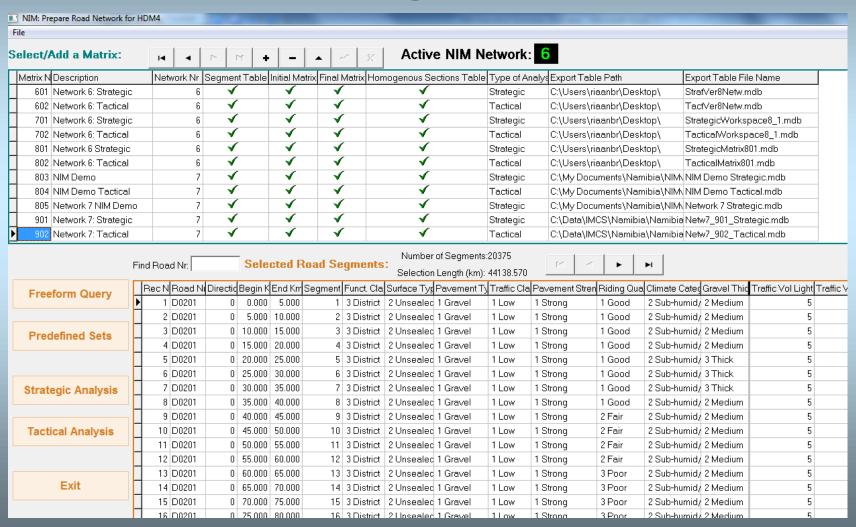

NIM Modules


Integrated Queries

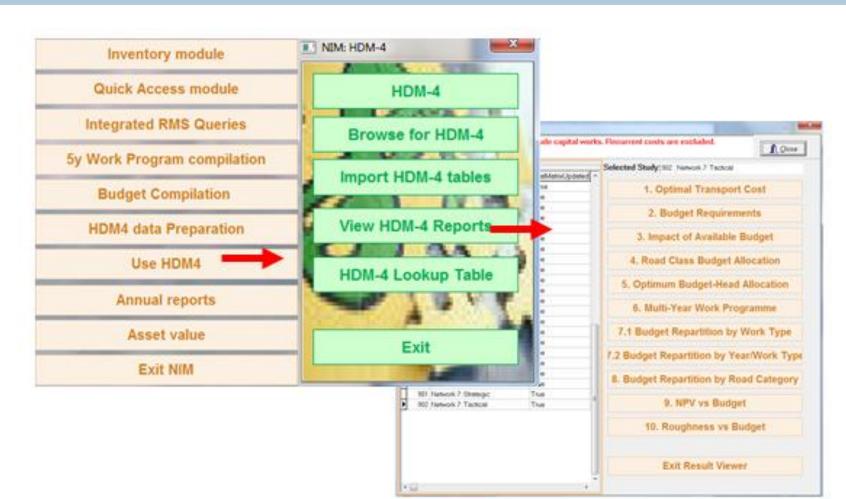
Enter/ Display 5-year programs



Compile/ Maintain Budgets


Use HDM

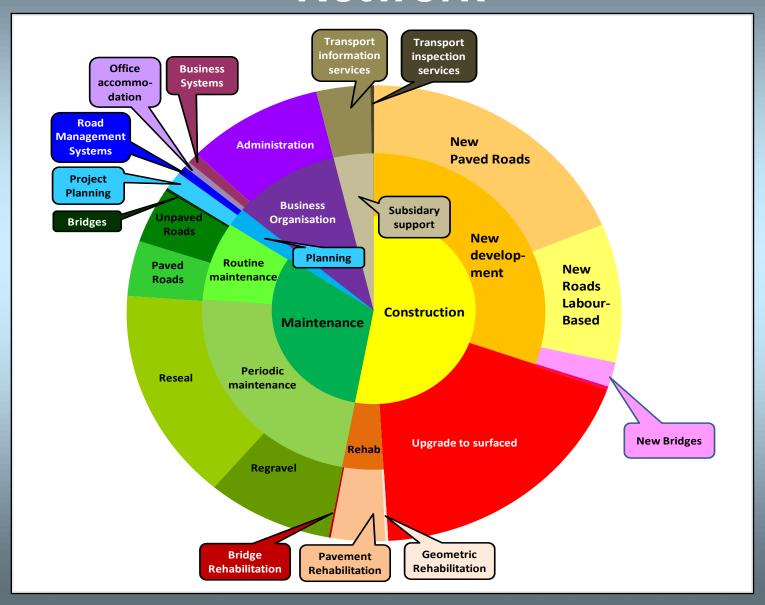
- Data preparation
- Matrix generation


Use HDM

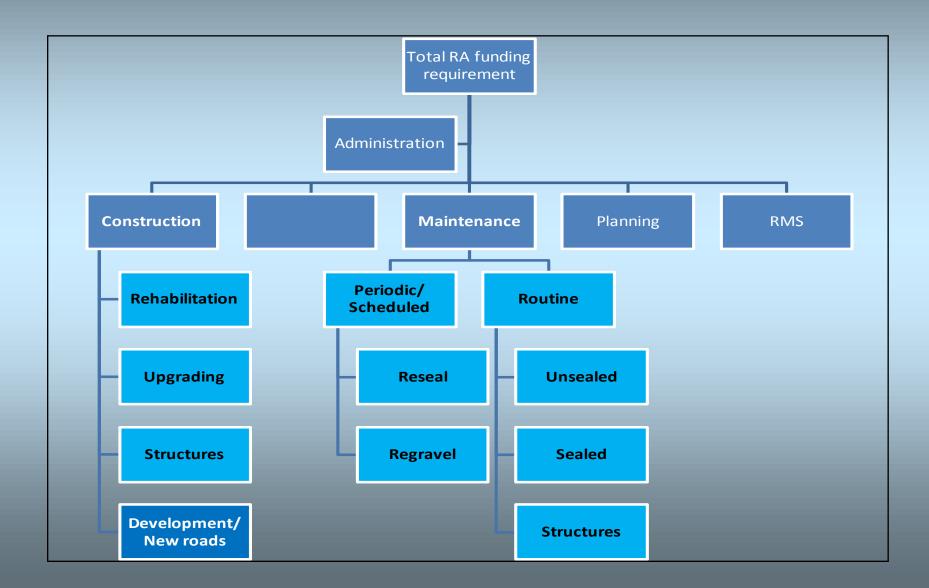
Generate real homogeneous sections

HDM Results

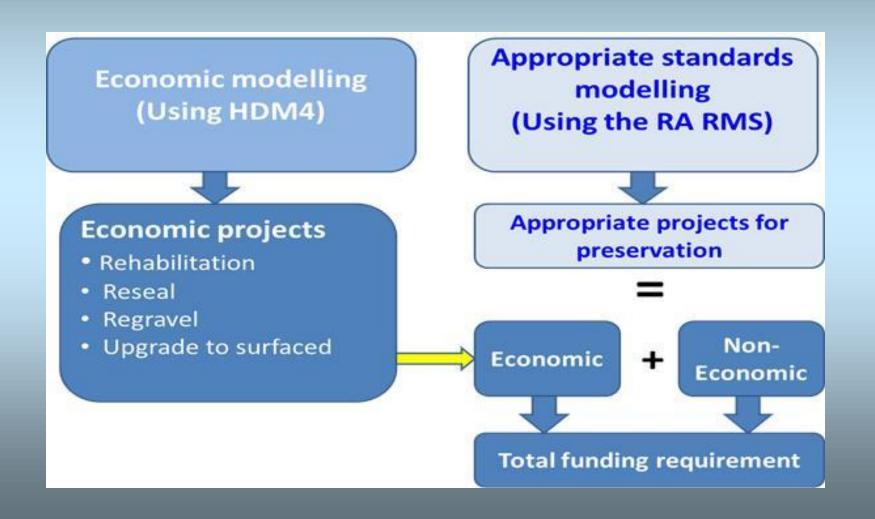
- Economic projects
- Optimisation based on minimisation TTC


Additional NIM Features

- Provision to store Annual Reports
- Calculation of Asset Value


Future NIM Functionality

- Most important
 - □ Combination of Needs
 - □ Currently done manually

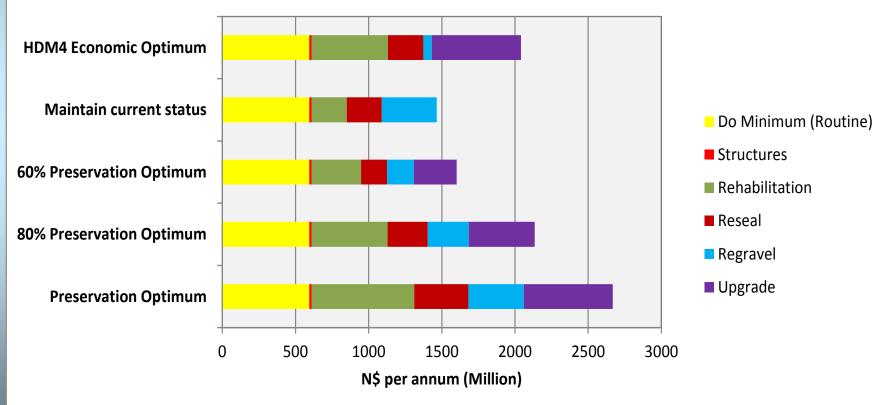

Total Needs on Existing Road Network

Components Modelled

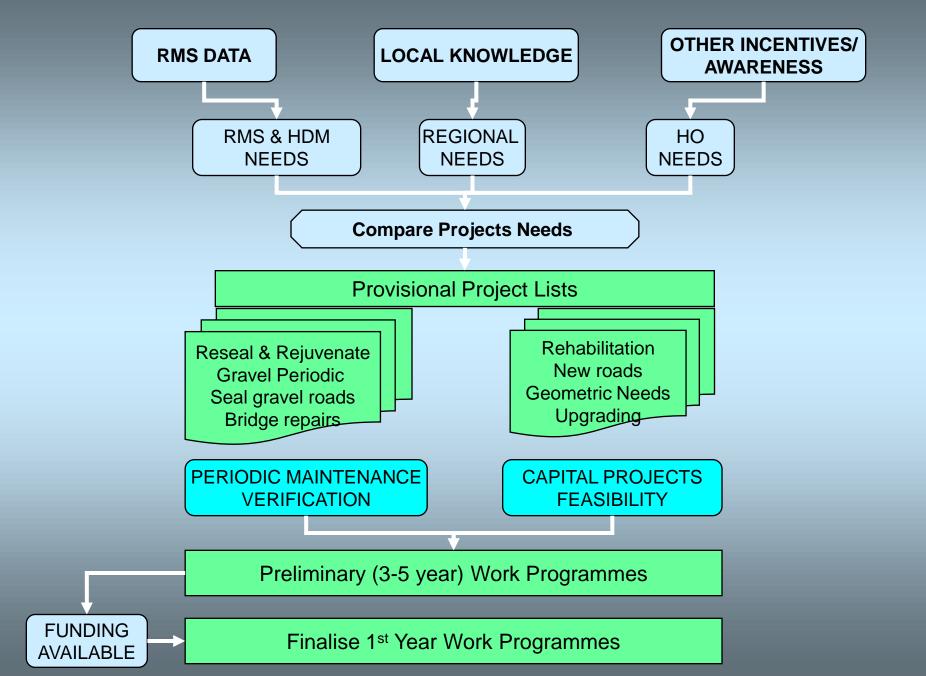
Modelling Strategy

3. RECOMMENDATION AND RESULTS

Scenarios


- 1 Base Option (Do Minimum Routine)
- 2 HDM 4 (Economic optimum)
- 3 Total Preservation optimum
- 4 80% of Preservation optimum
- 5 60% of Preservation optimum
- 6 Maintain current status

RESULTS


	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 2	
Summary	Optimum Average per annum (Million N\$)	annum (Million	60% of Optimum Average per annum (Million N\$)	Maintain current status Average per annum (Million N\$)	HDM4 Economic Optimum Average per annum (Million N\$)	
Capital Works						
Rehabilitation	700	518	337	239	520	
Reseal	370	274	178	239	243	
Regravel	379	280	182	376	57	
Upgrade	609	451	293	0	609	
Structures	16	16	16	16	16	
Sub-total	2 073	1 540	1 006	870	1 445	
Routine Maintenance						
Sealed	157	157	157	157	157	
Unsealed	428	428	428	428	428	
Structures	10	10	10	10	10	
Sub-total	595	595	595	595	595	
Total Need	2 668	2 135	1 601	1 465	2 040	

Results

TACTICAL PLANNING PROCESS

The End