

XXIVth World Road Congress Mexico 2011 Mexico City 2011.

STUDY ON REDUCTION OF VIBRATION CONTROL DEVICES FOR AKASHI-KAIKYO BRIDGE

Susumu Fukunaga

• Honshu-Shikoku Bridge Expressway Co., Ltd.

- Long-span Bridge Engineering Center,
 Wind and Earthquake Engineering Division
- susumu-fukunaga@jb-honshi.co.jp

Contents

- 1. Honshu-Shikoku Bridges
- 2. Akashi-Kaikyo Bridge
- 3. Wind-Resistant Design of the Tower
- 4. Structural Health Monitoring of the Tower
- 5. Study on Cost Reduction of Vibration Control Devices

Honshu-Shikoku Bridges

Honshu-Shikoku Bridges

Akashi-Kaikyo Bridge

Akashi-Kaikyo Bridge

Tower of Akashi-Kaikyo Bridge

Very tall

Anticipation of vibration

Wind tunnel test for Tower

Tuned Mass Damper

Additional Damper

Side span girder

Vibration displacement of the tower

	Displacement
No damper	95 cm
TMD + Additional damper	10 cm
Allowable value	30 cm

Structural Health Monitoring of Tower

Velocity

gauge

Displacement

gauge of TMD

Verification of validity of wind-resistant design

TMD

Swing Displacement of Pendulum

Observed Strong Wind

Wind direction : nearly transverse direction

There was a possibility of vibration of towers

Observed Vibration of Tower

Observed Displacement of Pendulum of TMD

Results of structural health monitoring

- Strong wind which could vibrate towers was observed.
- Vibration displacement of the tower was very small.

There is a possibility of reduction of vibration control measures.

Maintenance problems of vibration control devcies

• Many vibration control devices have to be maintained.

40 TMDs and 8 additional dampers

- Mantenance interval is every 5 years.
- Maintenance cost is expensive.

Reduction of maintenance cost of vibration control devices has been requested.

Study on cost reduction of vibration control devices

1. Re-evaluation of damping performance of tower

- 2. Re-evaluation of allowable displacement of tower
- 3. Re-evaluation of allowable change of damping of vibration control devices.

Change of damping constant of TMD

Maintenance interval : 5 years > 14 years

Relation of change of damping constant of TMD and vibration displacement of tower

Relation of change of damping constant of TMD and vibration displacement of tower

Conclusion

- Maintenance cost of vibration control devices have been larger problem.
- Study on reduction of maintenance cost of vibration control devices.
- Maintenance interval of vibration control devices can be extended.
- After the studies, reduction of maintenance cost of vibration control devices will be possible.

Thank you very much for your attentions

