

XXIVth World Road Congress Mexico 2011 Mexico City 2011.

3-D Characterization of Asphalt Pavement Macrotexture for Skid Resistance Evaluation

Yinghao Miao, Ph.D.

Associate Professor

Department of Transportation Engineering Beijing University of Technology, China miaoyinghao@bjut.edu.cn

OUTLINE

- Introduction
- Field tests
- Indicators derived from the 3-d digital pavement surface
- Relationship between DFT60 and the 3-D indicators
- Summary
- Acknowledgement

INTRODUCTION

- Surface texture of pavement is an important factor impacting skid resistance.
 - Macrotexture
 - Microtexture
- MTD and MPD are usually used to charaterize macrotexture, but it is hard to link MTD or MPD with skid resistance directly.
- Some new indicators derived from profile data have also been constructed, but the improvement is limited.

INTRODUCTION

- The macrotexture of pavement is an irregular 3-D curved surface. Indicators from profile is not enough to characterize the pavement macrotexture.
- This work adopted a 3-D laser scanner for pavement digitizing.
- Then indicators and relationships to skid resistance.

- Asphalt pavement surfaces tested
 - Asphalt Concrete (AC)
 - Stone Matrix Asphalt (SMA)
 - Rubber Asphalt Concrete (RAC)
 - Ultra Thin Wearing Course (UTWC)
 - Mirco Surfacing (MS)

Highway coding	Grade	Surface type	Number of test sites	Opening date
G101	1	SMA	5	Aug. 2010
G101	1	UTWC	4/4	Sep. 2010/Sep. 2009
G101	1	MS	4	Sep. 2009
G111	2	AC	7	Jul. 2009
G111	2	RAC	6	Sep. 2010
X020	3	AC	3	Sep. 2009
				Chor Chor

3-D laser scanner

Dynamic Friction Tester (DFT)

Sand patch

(a) AC

(b) SMA

(c) RAC

(d) UTWC

(e) MS

INDICATORS DERIVED FROM THE 3-D DIGITAL PAVEMENT SURFACE

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (Z_i - \bar{Z})^2}$$

Z is the value of Z coordination of each point

Z axis directs to the normal direction of the fitting plane of the macrotexture.

INDICATORS DERIVED FROM THE 3-D DIGITAL PAVEMENT SURFACE

$$N_a = \frac{1}{n} \sum_{i=1}^n \arccos N_Z^i$$

N_z is the Z component of the unit normal vector of the point

 N_z is also the cosine value of the angle between the point normal vector and Z axis

INDICATORS DERIVED FROM THE 3-D DIGITAL PAVEMENT SURFACE

$$N_{ca} = \frac{1}{n} \sum_{i=1}^{n} N_{Z}^{i}$$

N_z is the Z component of the unit normal vector of the point

 N_z is also the cosine value of the angle between the point normal vector and Z axis

Pearson correlation coefficient matrix

Indicators	DFT60	MTD	σ	N _a	N _{ca}
DFT60	1	0.44832	0.30915	0.60327	-0.60924
MTD	0.44832	1	0.92487	0.91175	-0.88646
σ	0.30915	0.92487	1	0.89565	-0.89362
N _a	0.60327	0.91175	0.89565	1	-0.98434
N _{ca}	-0.60924	-0.88646	-0.89362	-0.98434	1

The stepwise selection result of multiple linear regression

Step	Variable entered	Partial R- square	Model R- square	C(p)	F value	Pr > F
1	N _{ca}	0.3712	0.3712	26.0675	18.3	0.0002
2	σ	0.2748	0.646	4.0044	23.28	<.0001
3	MTD	0.0316	0.6775	3.2407	2.84	0.1028

 Three macrotexture indicators, including Na, σ, and MTD, entered the linear regression model with Rsquare of 0.6775.

$DFT60 = -4.33086N_{ca} - 0.44673\sigma + 0.14878MTD + 4.72378$

• This work tries the quadratic polynomial regression.

 $DFT60 = MAM^T + BM^T + C$

When MTD, σ, N_a, and N_{ca} entered the model, R-square is up to 0.8375.

 The regression analyses show obvious improvement derived from 3-D macrotexture indicators in pavement skid resistance evaluation, though the 3-D macrotexture indicators constructed in this work are not very detailed.

SUMMARY

- The conclusion can be summarized as follows:
 - The method using the 3-D laser scanner adopted in this work can fulfil the requirements of in situ collection of 3-D digital macrotexture.
 - Indicators derived from 3-D digital macrotexture have obvious advantage than TMD for pavement skid resistance evaluation.

SUMMARY

- This work is just a preliminary evaluation.
 - More detailed indicators should be constructed based on the 3-D digital macrotexture with consideration of the mechanism of tire-pavement friction.
 - Simpler model describing the relationship between macrotexture and skid resistance should be studied for practice application.

ACKNOWLEDGEMENT

• This work is funded by the National Natural Science Foundation of China (NSFC) (50908004).

XXIVth World Road Congress Mexico 2011

Mexico City 2011.

THANKS FOR YOUR ATTENTION!

