

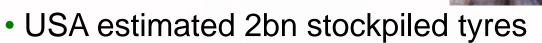
XXIVth World Road Congress Mexico 2011 Mexico City 2011.

ROAD FOUNDATION CONTRUCTION USING TYRE BALES – A LOW-ENERGY ALTERNATIVE

Dr Mike Winter

- Transport Research Laboratory (TRL)
- Head of Ground Engineering
- mwinter@trl.co.uk

Content


- Introduction to the Problems
- Tyre Bales
- Costs / Other Key Issues
- Specification
- Waste management
- Potential Applications
- Road Foundations
- Concluding Remarks

Introduction to the Problems

- Large quantities of post-consume
 - 40M / 450kt UK pa
 - Ban on tyres to landfill
 - Pan-European problem:

- Texas 69M stockpiled, 24M generated pa
- Design and construction of roads on soft ground is:
 - Complex and materials at limit of test techniques
 - Budgets constrained as traffic levels low

Tyre Bales

- 1.55m x 0.83m x 1.33m (1.70m³)
- Lightweight (810kg; 0.5 t/m³ shape)
- Permeable (sand/gravel)
- Porous (62%)
- High bale-to-bale friction
- Low energy process
 - 6% of that for shred
- Low themal conductivity
 - (Good insulation)

Costs and Other Issues

COST = MATERIALS + PLANT + LABOUR

- MATERIALS are generaly cost neutral
 - Compared to garnular fill

Transport distance will determine precise balance.
The use of correct PLANT will enable rapid placement and construction

Similar savings made with respect to LABOUR

Costs and Other Issues

- Supply and Production
- Handling
- Contamination Potential
 - Durability
 - Fire resistance
- Human health and safety

All addressed in TRL PPR045 and PPR080 ... AND

BSI PAS 108 - Specification

- Receipt, inspection, cleaning, handling & storage of tyres
- Production of bales
 - Target size/property based
- Factory production protocol
- Property measurement
- Properties & behaviours
- Applications in construction
- End of life service options

PAS 108:2007

Specification for the production of tyre bales for use in construction

ICS codes: 83.160.99; 91.100.01 NO COPING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

BSI PAS 108 – Specification

- Prepared by TRL and HRW
- Funded by WRAP

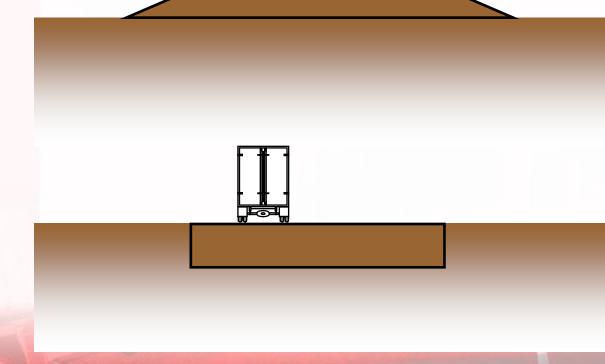
Waste Management

- Lays the groundwork for a
 - Quality Protocol (QP)
 - As for recycled aggregates
- To take Tyre Bales out of the waste stream

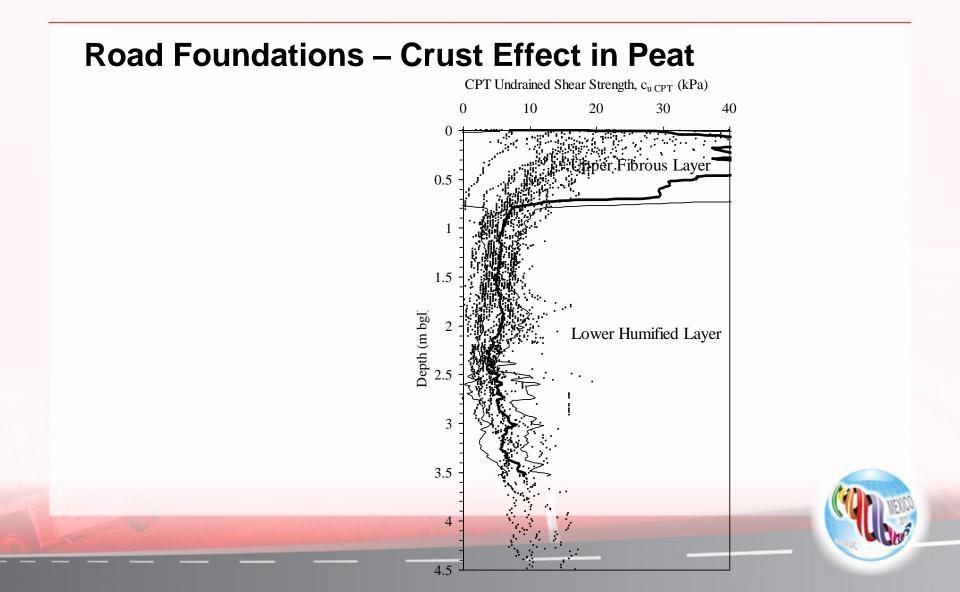
PAS 108:2007

Specification for the production of tyre bales for use in construction

ICS codes: 83.160.99; 91.100.01 NO COPING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW


Potential Applications

- Road foundations
- Lightweight fill
- Slope failure remediation
- Gravity retaining walls
- Drainage layers
- Stormwater management
- Environmental barriers
- River embankment and coastal defence works



Floating Construction

Mass of construction is additive Risk of settlement Surface 'crust' remains intact Settlement adjacent to construction Greater land take

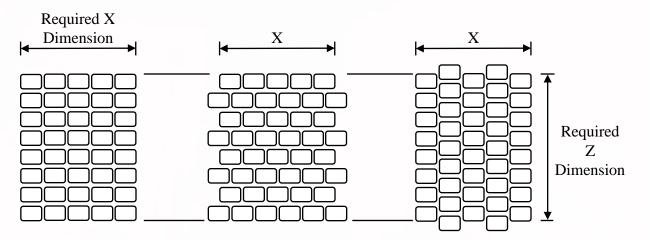
Buried Construction

Mass of construction is not additive Lesser risk of settlement Surface 'crust' breached Disposal of material Excavation support Basal heave Hydrogeology affected

Road Foundations – Design Approaches

- Analytical input to design limited
 - Strength/stiffness of soils
 - At / below lower limit of reliable measurement

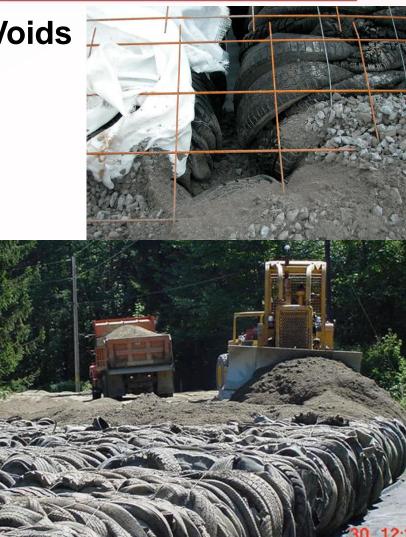
- Sampling process highly disruptive
- Design generally experience and specification-led


Road Foundations – Excavation & Preparation

- Excavation if buried construction
- Use low ground pressure plant
- Dry weather working
- Preparation
 - Geosynthetic separator
 - Protect geoysnthetic
 - Construct in cells

Road Foundations – 2D Alignment

(a) Chessboard


Simple to construct Used successfully Low lateral resistance Needs friction to resist

(b) Stretcher bond

Good lateral resistance Uses more bales (10%) Castellations need to be filled Staggered edge Differential settlement (b) Staggered Similar to stretcher bond Staggered edge Differential settlement Affect running surface

Road Foundations – Filling of Voids

- Bales must be tight together
- Fill at edges and corners
- Very important
- Maximises stiffness & strength
 - Geosynthetic separator
 - Protect geoysnthetic
 - Construct in cells
- 150 to 300mm layer above

Road Foundations – Pavement

- Determined by traffic flow/type
- Crossfalls and
- important
- Maximises stiffness & strength
 - Geosynthetic separator
 - Protect geoysnthetic
 - Construct in cells
- 150 to 300mm layer above

Concluding Remarks

- Tyre bales are a potential means of dealing with waste tyres
- More importantly they have significant beneficial properties
- Demonstrated through projects in UK, USA
- Primary objective to support emerging
- Signs that this is being achieved

THANKYOU

mwinter@trl.co.uk +44(0)131 455 5043