

XXIVth World Road Congress Mexico 2011 Mexico City 2011.

Seismic Retrofit of Asphalt Pavements Using Confined-Reinforced Earth

Tsutomu ISHIGAKI

- NIPPO Corporation Research Institute, JAPAN
- Senior Research Engineer
- ishigaki_tsutomu@nippo-c.jp

CONTENTS

- Introduction
 - Eartquake induced damages experienced in Japan
 - Problem statemant
- Confined-Reinforced Earth (CRE)
 - Structure
 - Applications for seismic retrofit of asphalt pavement
 - Materials
 - Construction
 - Full scale in-situ test results

1964 Niigata Earthquake (M7.5)

1995 The Hanshin Awaji Great Earthquake (M7.3)

2009 Noto Earthquake (M6.8)

2011 The Great East Japan Earthquake (M9.0)

East Nippon Expressway Company Ltd (2011)

2007 Niigata Prefecture Chuetsu Earthquake (M6.8)

2007 Niigata Prefecture Chuetsu Earthquake (M6.8)

2007 Niigata Prefecture Chuetsu Earthquake (M6.8)

Introduction Problem statement

- Reducing the risk of earthquake-induced damages to road is needed to promote safety, disaster mitigation and recovery.
- Traffic is easily intercepted by the severe earthquakeinduced damages to road pavements.
- It is strongly needed for minimum road pavement performance to keep the emergency traffic remain in service despite severe earthquake.
- A seismic retrofit technique of asphalt pavements using Confined-Reinforced Earth (CRE) is newly developed.

Confined-Reinforced Earth (CRE) Structure

 Compacted soil layers reinforced by geosynthetics & confined by the rigid anchors

 High flexural rigidity of CRE for overcoming weakness of subgrade in tension and flex / bending

Confined-Reinforced Earth (CRE) Applications

• For Bridge approach settlement

For Box culvert approach differential settlement

Confined-Reinforced Earth (CRE) Materials

1) Compacted crushed stone

2) Geosynthetics

Confined-Reinforced Earth (CRE) Construction

1) Geosynthetics placement

2) Laying

4) Anchor driving

5) Anchor locking

3) Compaction

• Trial embankment for simulating differential settlement of earthquake-induced damages to road pavements

With CRE

- Forced differential settlement from 0 to 550mm

• Test results of 550mm differential settlement

With CRE

Thank you for your warm support

