XXIV<sup>th</sup> WORLD ROAD CONGRESS Mexico City 2011

# ECONOMIC ASSESSMENT OF ROAD SAFETY

# Wim Wijnen

SWOV Institute for Road Safety Research

Researcher / Economist

Wim.Wijnen@SWOV.nl



## **INTRODUCTION: ECONOMIC RESEARCH SWOV**

- Social costs of road crashes
- Economic assessment of road safety measures
- Value of a statistical life
- Road safety expenditure
- International working groups

#### INTRODUCTION

- Why economic analysis of road safety?
  - Scarce resources vs. many investment options
  - Efficient use of resources in order to attain as much safety as possible
- PIARC TC 2 Working group on cost-effectiveness of road safety measures and allocation of resources
  - Literature review and questionnaire
  - State of the practice report



# **OUTLINE OF THIS PRESENTATION**

- Introduction
- Working group activities and outputs
- Economic assessment tools
- Data requirements
- Monetary valuation of road safety
- Role of economic assessment in policy making
- Conclusions and recommendations

#### STATE OF THE PRACTICE REPORT: TOPICS

- Project appriasal
- Cost-effectiveness analysis (CEA)
- Cost-benefit analysis (CBA)
- Monetary valuation of road safety
- Data requirements for economic assessment of road safety
- Results of economic assessment studies
- Barriers to the use of economic assessment tools
- Resource allocation practices
- Case studies CEA and CBA



# QUESTIONNAIRE

- Topics:
  - Use of economic assessment tools
  - Barriers for using these tools
  - Monetary values used
  - Secondary effects
  - Cost-effectiveness of road safety measures
  - Methodological aspects
- Response of 21 Countries
  - 10 European, 3 Asia, 3 Latin-America, 2 North-America, 1 Middle East, 1 Africa, Australia



# **ECONOMIC ASSESSMENT TOOLS**

- Cost-effectiveness analysis
  - Costs vs. effects in terms of casualties saved
  - Appropriate when budgets are fixed and no side effects
- Cost-benefit analysis
  - Costs vs. benefits in terms of reduced road crash costs and side effects (travel time, environment)
  - Do benefits outweigh the costs?
  - Enables making comparisons with other investments
- Cost-utility analysis
  - Costs vs. effects in terms of QALYs (Quality Adjusted Life Years) saved
  - Takes into account effects on quality of life (life years lost, severity and duration of injuries)



## **EXAMPLE COST-BENEFIT ANALYSIS**

|                      | Package 'Optimal use of<br>road safety measures' | Package 'Strengthening<br>present policy' |
|----------------------|--------------------------------------------------|-------------------------------------------|
| Benefits:            |                                                  |                                           |
| Road safety          | 10.042                                           | 8.471                                     |
| Travel time          | -816                                             | 1.591                                     |
| Transport costs      | 184                                              | -240                                      |
| Environment          | 121                                              | -17                                       |
| Public health        | 66                                               | 80                                        |
| Increase of mobility | 8                                                | 70                                        |
| Total benefits       | 9.604                                            | 9.953                                     |
|                      |                                                  |                                           |
| Costs:               | 6.472                                            | 11.042                                    |
| Efficiency:          |                                                  |                                           |
| Benefit-cost balance | 3.132                                            | -1.088                                    |
| Benefit-cost ratio   | 1,48                                             | 0,90                                      |

Costs and benefits of road safety measure packages in Norway (million Euro; source: Elvik, 2007)



# DATA REQUIREMENTS CBA AND CEA

- Costs of road safety measures
  - No international standard methodology
  - Few (international) data available, country-specific studies needed
- Effects of road safety measures
  - Preferably before-after study and control group
  - Meta-analysis, e.g. Handbook of road safety measures (Elvik et al, 2009)
- Road safety future developments
  - Mobility
  - Risk
- Secondary effects
- Valuation of road crash costs
  - Needed to monetize road safety effects
  - International standards available (e.g. COST 313)



# SOCIAL COST OF ROAD CRASHES

## Cost elements:

- Medical costs
- Production loss
  - permanently (fatalities)
  - temporarily (injuries)
- Property damage (vehicles, roads, etc.)
- Settlements costs: police, fire service, judicial, insurance
- Human losses: loss of quality of life, grief, sorrow

## SOCIAL COST OF ROAD CRASHES: EXAMPLE

Costs of road crashes in the Netherlands: 12 billion euro (2003)



Compare costs of traffic jams: 2.5 billion euro

Costs per casualty:

- Fatality:2.4 million euro
- Serious injury: 250.000 euro
- Accident & Emergency: 8.000 euro

## VALUE PER FATALITY: INTERNATIONAL COMPARISON



Source: TØI report 634/2003

Figure S.1 Official valuations of a traffic fatality in various countries ranked in ascending order. Unit: purchasing-power-parity-adjusted 1999 USD.

## **HUMAN COSTS**

- Human costs: suffering, pain, loss of quality of life
- Concepts used:
  - Value of a Statistical Life (VOSL)
  - Willingness to pay for a risk reduction
- Methods:
  - Revealed preferences
  - Stated preferences
- Human costs of (serious) injuries
  - Cost per casualty relatively low (UK: 10% of VOSL)
  - Total costs are high because of large number of injuries



## WTP VALUES: INTERNATIONAL COMPARISON



Value of a statistical life, million euro (source: De Blaeij et al., 2004)



#### **TRANSFERRING VALUES BETWEEN COUNTRIES**

- Ideally: country-specific values of a statistical life (VOSL), based on WTP
- Value tranfers on the basis of income differences
  - Linear relation between GDP/capita and VOSL (income elasticity is 1)
- Estimates in literature: VOSL is 70-120 times GDP per capita



## **ECONOMIC ASSESSMENT AND POLICY MAKING**

- CEA and CBA are decision *supporting* tools
- Barriers to the use of economic assessment tools (ROSEBUD):
  - Fundamental, theoretical basis
  - Institutional
  - Technical
  - Implementation
- How to overcome (technical) barriers?
  - Develop standard methodologies
  - Establish system for exchanging information
  - International scope



# **CONCLUSIONS AND RECOMMENDATIONS**

- Economic assessment tools are useful to support decision making
- Road safety measures often found to be cost-beneficial
- Data requirements are high
- International scope is needed
  - Standard methodologies
  - Exchanging and transferring information
- Further methodological improvements:
  - Human costs of injuries
  - Quality adjusted life years

