

XXIVth World Road Congress Mexico 2011 Mexico City 2011.

VEHICLES_TRAJECTORY ANALYSIS : AN INNOVATIVE APPROACH OF ROAD SAFETY

Bernard Jacob

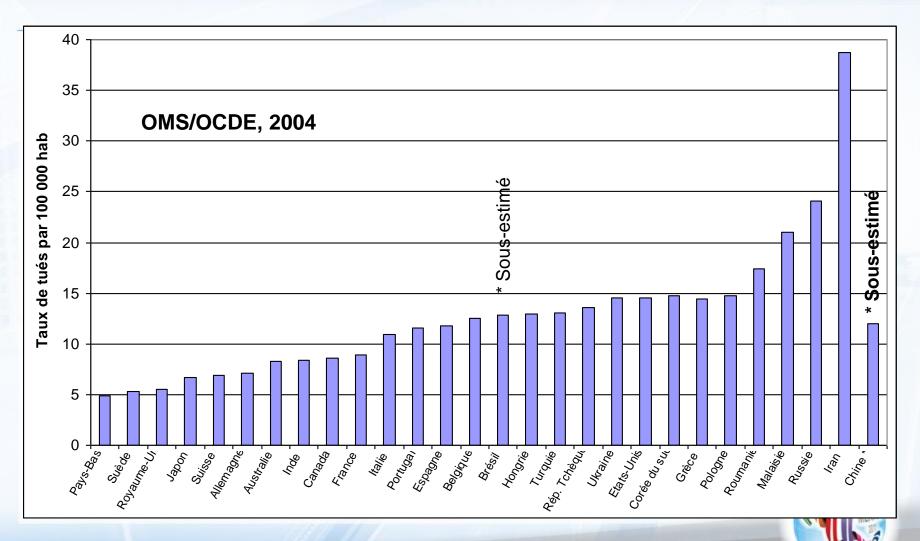
- IFSTTAR (French Institute for Sciences and Technologies for Transport, Development and Networks
- Deputy Scientific Director Transport, Infrastructures
 and Safety
 IFSTTAR
- <u>bernard.jacob@ifsttar.fr</u>

Co-authors: François Peyret, Eric Violette

Outline

- Challenges
- Trajectories and accident mitigation
- Trajectory observatories
- Trajectory modeling and limit states
- Data, measurement methods and calibration
- Diagnosis tools
- Warning in bends
- Risk mitigation in intersections
- Automated speed enforcement impact on speeds
- Conclusions

Challenges Trajectories and road safety


PIARC, Mexico 2011, 28/9

Challenges

- 1,3 million fatalities/yr on the roads (worldwide)
- Not uniformly distributed:
 - OECD: 120 000, BRIC: 260-300 000, others: 900 000
- 50 millions injuries/yr, 90% in developing countries
- Childs, pedestrians, cyclists, elder persons
- 65 to 100 bn \$/yr, or 0.5 to 3% of GNP
- Figure reliability: OECD, WHO, WB, IRF, polices
- OECD: 20 to 40%, developing countries: +20 25% in 10 yrs

Fatalities on roads per country

PIARC, Mexico 2011, 28/9

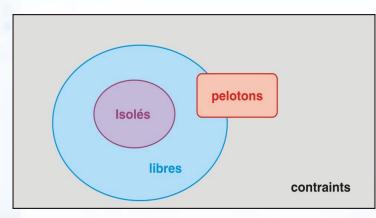
Trajectories and risk mitigation

EU: 0.6 fatality/100 millions pass.km - 8 fatality/1000 km/yr
 accidents → statistics of rare events (Prob 10⁻⁴-10⁻⁸), main

causes solved, combination of complex causes

- IFSTTAR (2003): study "quasi-accidents" or "near missed" → risk indicator, appropriate driver behavior /vehicle - ext. conditions
- "Extended" Trajectory: time function (X,V,Γ,J): vehicle + infrastructure + driver (+ ext. conditions)
- Failure trajectory analysis: Prob 10⁻¹-10⁻³ incidents, statistics OK

Trajectory observatory Models – measurements – Limit states - data

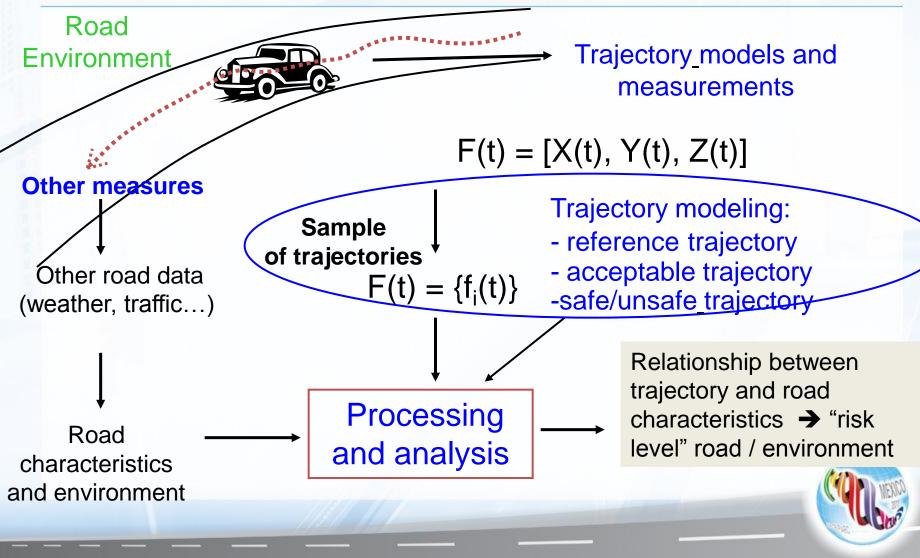


PIARC, Mexico 2011, 28/9

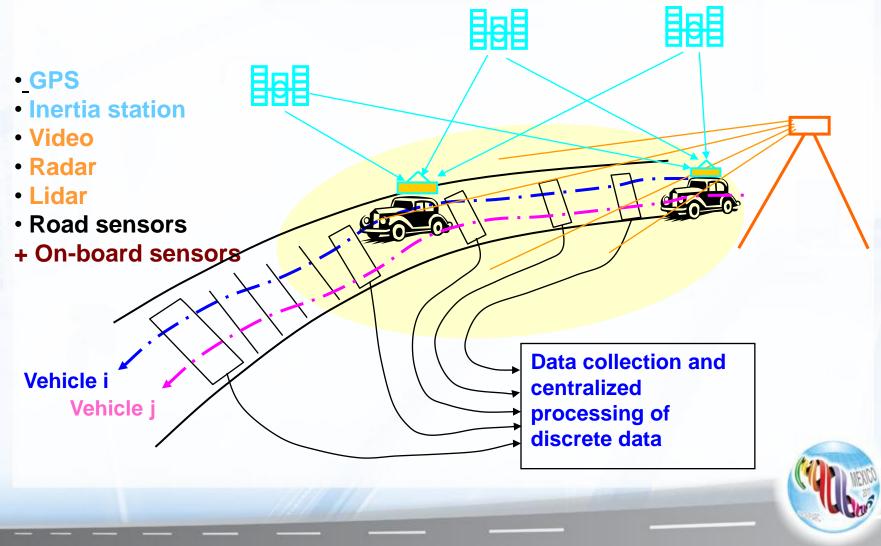
Trajectory observatories

 Tools, devices + softwares, data collection + processing + analysis / databases

	On-board measurements Road side measurements			
Local Trajectories < 100m	MITL	METL		
Global Trajectories > 100 m	MITG	METG		
Reference Trajectories	MRT			



- Vehicle types (cars, HGV...)
- Conditions and external parameters (traffic, weather...)


PIARC, Mexico 2011, 28/9

Trajectories : model & measurement

PIARC, Mexico 2011, 28/9

Trajectory measurement tools

PIARC, Mexico 2011, 28/9

Trajectories and limit states

- Trajectory = (random) process in Rⁿ
 location & derivates, location time function = path
- Distance between trajectories (Mahalanobis) to distinguish traj. with same path & ≠ time functions
- Safety domain $g(X,V,\Gamma) \ge 0$:
 - Ultimate limit states: accident, irreversibility
 - Serviceability limit states: quasi-accident, reversibility
- Link (correlation) failures- infra characteristics, vehicles, driver commands, situations

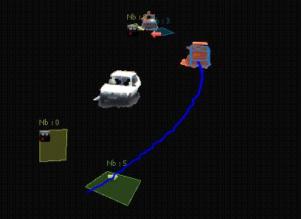
Data and measuring tools

Parameter	Technology	GPS	Inertia	Camera	Radar	Lidar
Position (plane)	On-board	+++	++	++	+	+
	Road side	-	-	++	+	++
Angle de cap	On-board	+	+++	+	-	-
	Road side			+	+	+
Speed (long.)	On-board	++	+++	- 5	+	+
	Road side	-	-	+	++	+
Accelerations (long. + transv.)	On-board	-	+++	-	-	_
	Road side	-	-	-	+	-

Calibration: MRT (vehicle Ifsttar: VERT) Cinematic bi-frequency GPS_& inertia station, accuracy: a few cm

PIARC, Mexico 2011, 28/9

Applications

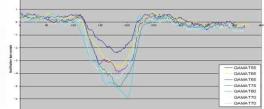


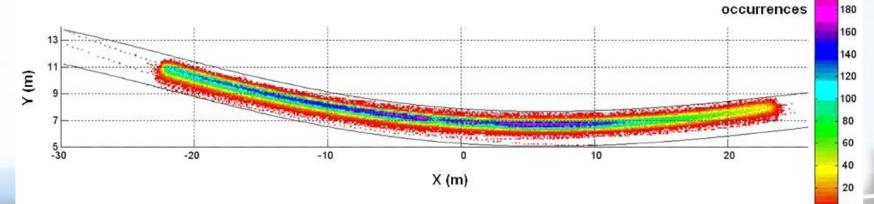
PIARC, Mexico 2011, 28/9

Diagnosis tools (1)

- Black holes
 - Bends, intersections...
 - Local observatory, road side
 - Cameras + lidar
 - All vehicles
 - Data fusion: filtrage particulaire + bicycle model
 - Range > 100 m
 - Transv. location: RMS 0.2-0.3 m
 - Long. speed: RMS 1.3 km/h

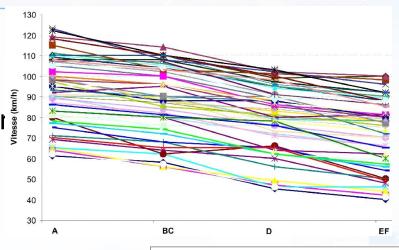
Diagnosis tools (2)

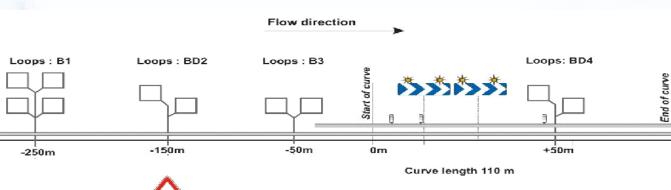

- Itinerary diagnosis
 - a few km to more than 100 km
 - global observatory, on-board
 - samples of vehicle and trajectories (instrumented fleet, naturalistic driving)
 - mono-frequency GPS + gyro meter + odometer + B&W camera (*road signs*) + context record
 - data fusion: Kalman filtering + bicycle model
 - unlimited range
 - transv. location : RMS 0.1-0.2 m with road signs
 - long. speed: RMS 1.5 km/h

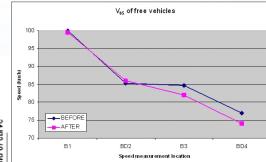

PIARC, Mexico 2011, 28/9

Warning in bend (1)

- France, 2009: 32% accidents, 36% fatalities
- Trajectory survey to analyze road signing and driver behaviors
- Y, V_X, Γ_X , Γ_Y : functions of x, thresholds (limit states), e.g. $\Gamma_{X,Y} \le 5 \text{ m/s}^2$.
- MITL \rightarrow measuring spots & light signal in the bend approach (if V_X >V₈₅).

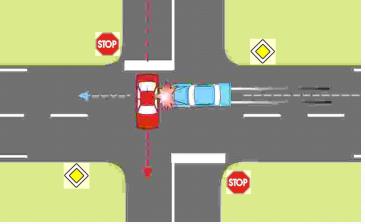






Warning in bend(2)

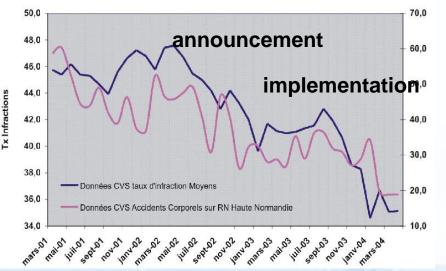
- Instrumentation METL (loops & cameras)
- Statistics of trajectories → assessmer of warning threshold + impact of road sign
- V_X : -4% \rightarrow -25% fatality risk



Risks in intersections

- Intersections in France: < 1% network 10% accidents, 13% fatalities
- Risk x10 in country side, overspeeding on priority roads, low visibility
- Low accident frequency → nearmissed analysis (METL)

- Radar, loops, cameras
- Tc (time to collision) <> S (threshold)
 (e.g. 6 s for a 2 lane road)
- if Tc< S : video \rightarrow cross risk
- Development assessment


PIARC, Mexico 2011, 28/9

Impact of automated speed enforcement and penalty

- High reduction of unsafety
- Behavior and speed assessment: national, regional (METG), local (METL)

- 2000-2005 (Normandie) : speed and accident evolving 60 stations, 400 000 cars/day
- Violations: 45% → 35% fatalities: -25% to -30%
- radar impact: ≈1 km + global mean speed reduction

Conclusions

- Trajectories = result of V-I-D interaction
- Development of observatories (IFSTTAR, SARI...)
 - road side, on-board, multi-sensor + data fusion
 - statistics with large trajectory samples, itineraries and black hole (bends, intersections...) diagnosis
 - Near-missed and risk studies, causes identification
- Mitigation and warnings (≠ curative) → human, money and environmental savings
- Perspectives : FOT + naturalistic driving, sensor improvement, DB, automated processing tools, instrumented vehicle fleets...