

XXIVth World Road Congress Mexico 2011 Mexico City 2011.

The new approach of Road Infrastructure Safety Management - Preconditions, Instruments and Examples -

Univ.-Prof. Dr.-Ing. Jürgen Gerlach

- University of Wuppertal, Germany
- Member of TC C.1
- jgerlach@uni-wuppertal.de

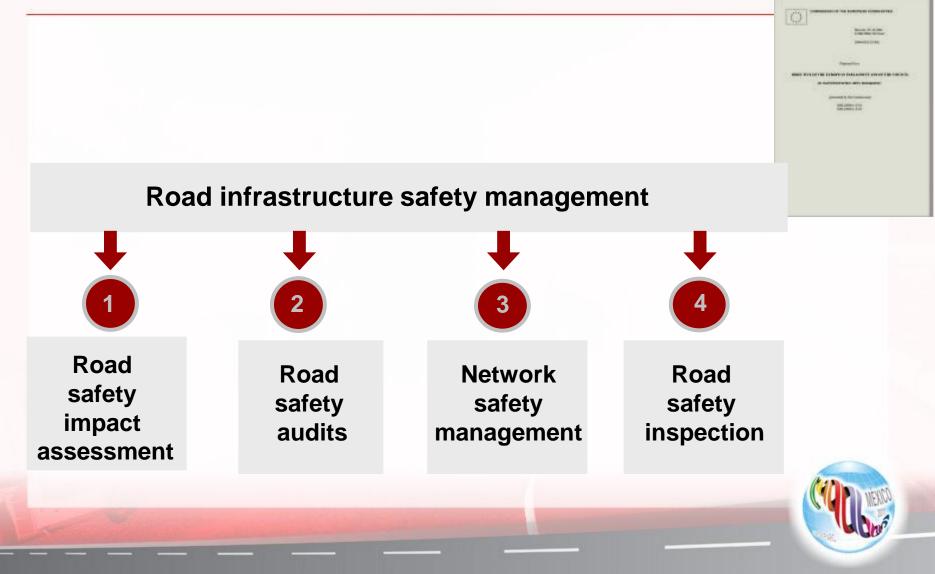
BERGISCHE UNIVERSITÄT WUPPERTAL

WUPPERTAL

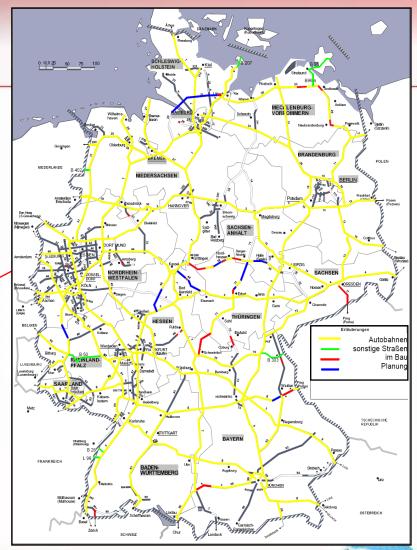
Main Campus

Haspel Campus

Schwebebahn – Suspended Monorail WUPPERTAL

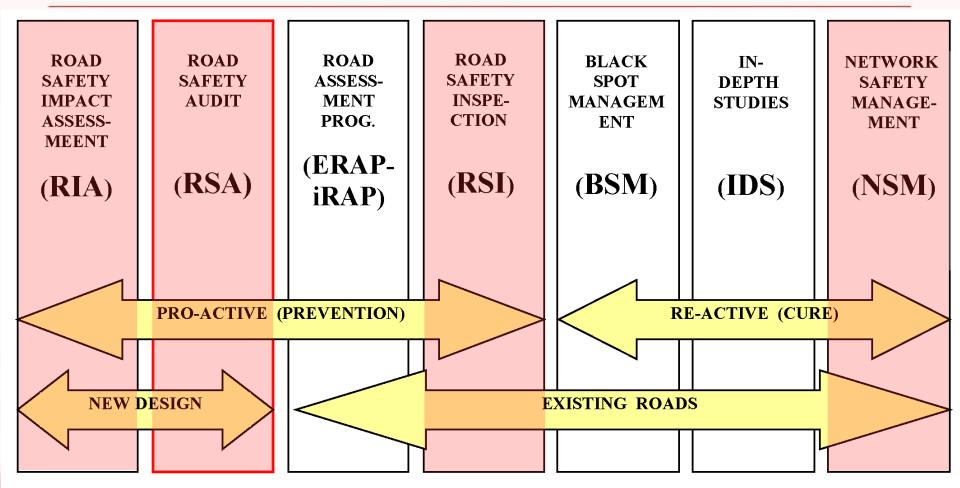


picture: www.answers.com


Example:

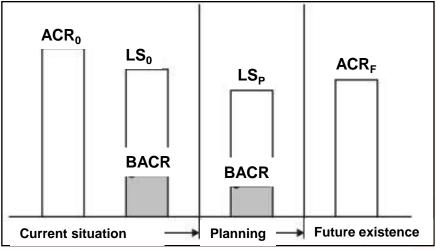
EU - Road infrastructure safety management directive

Application area of the directive: TEN-Road network



source: BMVBS, Ref. S10

Overview of international terms of safety management

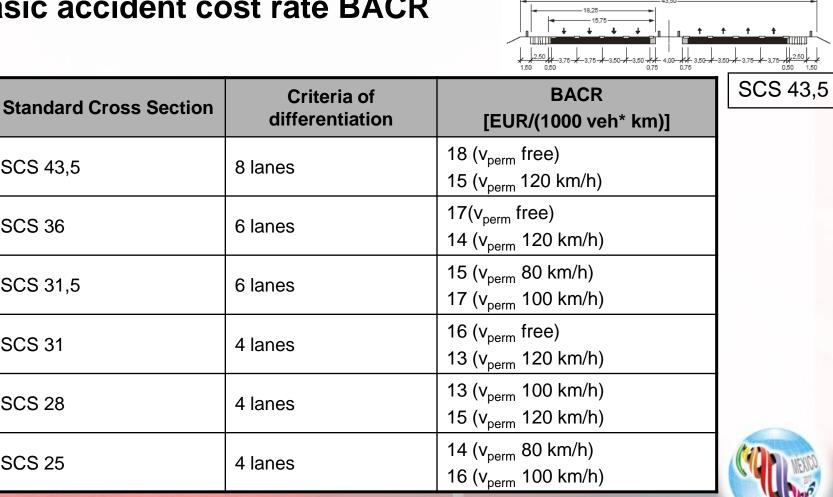

6

Aim of the procedure:

- A strategic comparative analysis of the impact of a new road, of alternatives or of substantial modifications to the existing network on the safety performance of the road network
- At the **initial planning stage** before the infrastructure project is approved
- The purpose is to demonstrate, on a strategic level, the implications on road safety of different planning alternatives of an infrastructure project

Level of Safety
 Current situation
 Plann
 (virtual describing factor of road safety)

LS = BACR + surcharge


Terminology:

LS

- BACR = **Basic Accident Cost Rate** for assessment cases (all design elements conforming to standards/guidelines)
- surcharge = accident cost surcharges for deviations from
 standards/guidelines

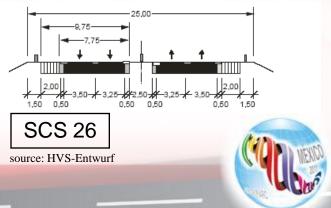
Basic accident cost rate BACR

source: HVS-Entwurf

SCS 43.5

SCS 36

SCS 31,5


SCS 31

SCS 28

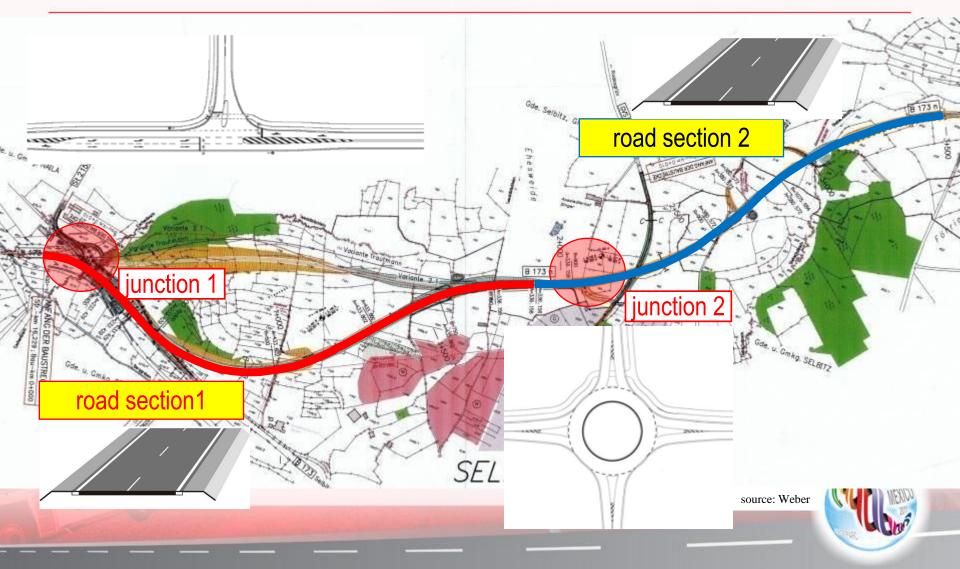
SCS 25

Typical application area / design Road safety impact assessment RIA

- Traffic volume equates to the application area
- Elements and dimensions of the cross section equate to the standard cross section
- Design elements in layout and profile equating to the standards
- proportions of consecutive radiuses are adjusted
- Cross falls are conform to the regular value
- Existing sight distances are greater than the necessary sight distances
- Roadside without unsafe features

Surcharges for line deviations from constructions conforming to standards

Criteria	Deviations from constructions conforming to standards	ACR [EUR /(1000 veh * km)]					
		SCS 43,5	SCS 36	SCS 31,5	SCS 31	SCS 28	SCS 25
Traffic volume	ADT > 105,000 v/24h		2	2			
	ADT > 68,000 v/24h				2		
	ADT > 30,000 v/24h					2	
	ADT > 82,000 v/24h						2


Criteria	Deviations from constructions	ACR [EUR /(1000 veh * km)]					
Criteria	conforming to standards		SCS 36	SCS 31,5	SCS 31	SCS 28	SCS 25
	Width of carriageway 15.00 m \leq W < 15.75 m (4 l)	2					
Cross	Width of carriageway W < 15.00 m (4 l)	5					
section	Width of carriageway 11.50 m \leq W < 12.00 m (3 l)		2				
	Width of carriageway W < 11.50 m (3 l)		5				

source: HVS-Entwurf

Surcharges for local deviations from constructions conforming to standards

Criteria	Deviations from constructions conforming to directives			ACR [EUR /(1000 v)]					
Onterna			SCS 43,5	SCS 36	SCS 31,5	SCS 31	SCS 28	SCS 25	
	Radius below minimum radius		4	4	4	4	4	4	
	Consecutive radiuses are not adjusted R1/R2 > 1.5 with R1 ≤ 1,500 m			Deviations from constructions conforming to directives			ACR [E	0 v)]	
Elements of layout	Length of line L > 2,000 m	Criteria							
on layout	Falling below minimum length of line between curves which are bent in the same direction		Com				SCS 43,5	SCS	36
	Falling below minimum radius following a line	Sight	Existing sight d	xisting sight distance < required stopping sight			6	6	5
Elements	Longitudinal slope s > 4.0 %			Cross slope of the line c < 2.5 %					
of profile		Road	•	Cross slope of the circular line c (R) to small				2	
source: HVS-Entwurf		space	•						:
		design _	Diagonal slope d > 9.0 %				1	1	
			Zone of low drai	Zone of low drainage				6	•
			Punctual dange measures	unctual dangerous spot without protection neasures			3	3	ţ
		Road –	Punctual dange	Punctual dangerous spot with protection measures			1	1	1
			Vertical danger	Vertical dangerous spot without protection measures			10*lengł [km]	nt 10*lei [kr	-
a Lor	and the second		Vertical danger	Vertical dangerous spot with protection measures			2*lengtl [km]	n 2*ler [kr	-

Project example – safety verification Road safety impact assessment RIA

Calculation of accident cost rates and safety check

		ACRsection [EUR / 1000 v * km]	ACRjunction [EUR / 1000 v * km]	LOS (safety)	
≥	section 1	28 + Δ		В	1
terr	section 2	28 + Δ		С	
Alternative 1	junction 1		12 + A	Α	
e 1	junction 2		24 + Δ	В	
Þ	section 1	34+ Δ		D	
Alternative 2	section 2	34+ Δ		D	sourc
ative	junction 1		10 + Δ	Α	- Web
N	junction 2		24 + Δ	В	IEXICO

2

Aim of the procedure:

- an independent detailed systematic and technical safety check relating to the design characteristics of a road infrastructure project
- covering all stages from planning to early operation as to identify, in a detailed way, unsafe features of a road infrastructure project

Road safety audit RSA

Example of an audit report

SEETO RSA/RSI Pilots: RSA Report (draft) for Montenegro

Support for implementing measures for the South East Europe Core Regional Transport Network Mubi Annual Pter 2008-2012 Europe/Ad/125783/C/SER/MULTI

PROBLEMS:

Function, design and operating elements

 The road is located in a difficult topographical area. Fixed obstacles nearby the carriageway are unavoidable, sufficient passive safety installations are necessary.

Cross section

- (2) In some subsection the auditors have doubts that sufficient measures has been foreseen on cutting slopes to prevent falling material (e.g. falling rocks). Therefore the client should check with support of a geologist, if and where additional safety provisions like steel meshes are necessary.
- (3) Regarding the drainage of the road the RSA has identified problems at km 1035+190 (end of tunnel 29). At the right hand side the water could be not evacuated in a sufficient way because the interrupted open drainage gutter at the tunnel entrance.

Road Safety Audit Report

Road M2

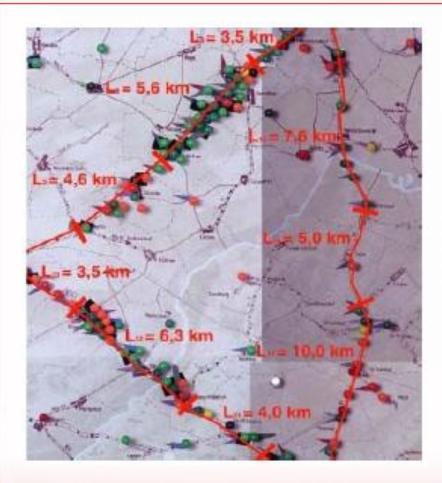
Section from km 1034+613 to km 1035+490

Road safety audit RSA

Safety deficiency in a planning of an urban road: insufficient sight distances

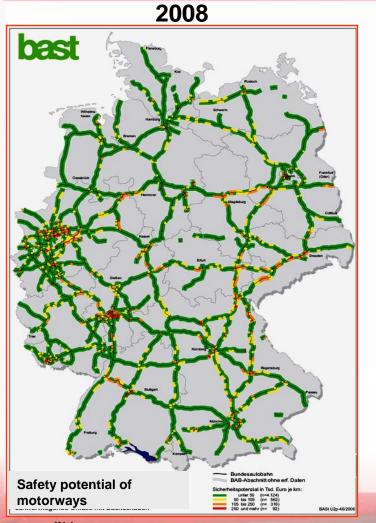
Deficits	Group of deficits	Subgroup of deficits
Line-of-sight obstruction by parking vehicles	Parking traffic	Bicycle/ Pedestrian

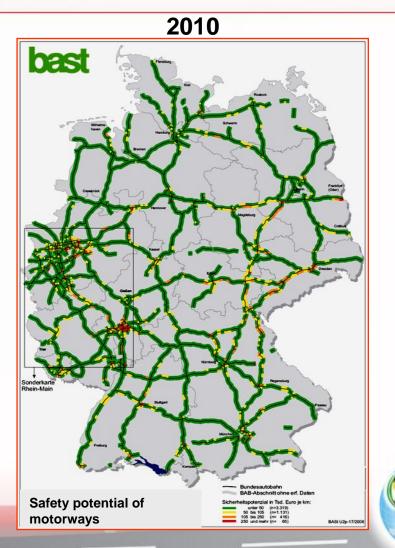
Layout:



Aim of the procedure:

- a method to identify, analyse and rank sections of the existing road network upon which a large number of accidents in proportion to the traffic flow have occurred
- a method for identifying, analysing and classifying parts of the existing road network according to their **potential for safety development** and accident cost savings
- purpose is to target investments to the road sections with the highest accident concentration and/or the highest accident reduction potential.

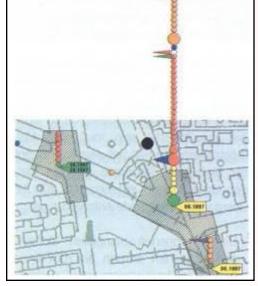

Network safety management NSM



Example of sections with high accident occurrence

Network safety management NSM

source: Weber


Black Spot Management

Network safety management NSM

Type of black spot	Authoritative maps	Identification of pecularities
Black spot patch BSP	1-YM; 3-YM(P); 3-YM(SP)	Limiting values
Black spot line BSL	3-YM(SP)	Visual density AD(SP); limiting values
Black spot area BSA	3-YM(P)	Accident density AD(SP)

Types of black spots, authoratative maps and criterias to identify pecularities

Accident type plug in map	Limiting values Number of accidents	Period under observation [months]		
1-year map	5 (similar)	12		
3-Years map (P)	5	36		
3-Years map (SP)	3	36		

Accident type plug in map

1-YM

Limiting values for black spots BS ("similar": same typ of accident or circumstances)

Aim of the procedure:

- ordinary periodical verification of the characteristics and defects that require maintenance work for reasons of safety as a preventive tool
- an additional part of regular road maintenance

RSI Example

Insufficient Sight Distances

Conclusion / recommendations

- Implementation of safety management in planning level necessary
- Application of the complete method mix on all roads
- No "cherry-picking" of selected methods
- Responsible handling with safety management is demanded
- Extensive training is essential
- Experiences have to be spread and discussed
- Engineers and decision makers have to be sensibilised
- just then it is possible to succeed in planning, building and maintaining "safe roads"

Thanks for your attention!

Juergen Gerlach

www.traffic-transport.org