XXIVth WORLD ROAD CONGRESS Mexico City 2011

TOWARDS AN ECO-COMPARATOR FOR ROAD WORKS STEALTH

Gérard VALLAT

- EGIS
- Infrastructure Engineering Director (Directeur « Métiers Infrastructures »)
- gerard.vallat@egis.fr

WHY AN ECO-COMPARATOR?

The stake

- 20% of the French total road congestion are due to road works (4 billion Euros/year or 0.2% of the GNP)
- 20% of this cost correspond to environmental costs (greenhouse gas, pollutants, noise...)

PROPICE – Stealthy Road Works **project**

- Partners from road construction, motorway operation, research and academic areas; coordination: Egis
- Issues investigated: pavement lifecycle increase, road works duration decrease through optimised procedures and processes, contract innovation, road works traffic impact minimisation...

The RWOT (Road Works Optimising Tool)

- **PROPICE** developed a Road Works Optimising Tool called **OPTRA** (OPtimisation des TRAvaux)
- The RWOT is able to provide help for the minimisation of the final disturbance to traffic during the various steps of a road works project: design, planning and field realisation
- The RWOT can address the needs of the various actors of road works performance: infrastructure owners, designers, contract managers, building companies and traffic operation teams

The RWOT: examples of use

- Design phase
- Planning phase
- Field operation phase

The RWOT: examples of use

• Design phase: An example of forecast simulation for road works design

WHEN TO USE IT?

phase

Principles

- Use of the stock method: the number of vehicles N in the road section is estimated from the upstream volume (demand) and the downstream volume C (road works capacity depending of the remaining lanes)
- Waiting time = N/C
- Queue length = N/D (D = queue density)
- Over-consumption and over-emission of greenhouse gas and pollutants due to the road works are estimated using a set of formulas from the European ARTEMIS project (according to the vehicle class) and a modelling of the national vehicle fleet structure

Functionalities

- Help to optimal planning design through 2 different modes (ex ante) (from predicted demand and road works capacity):
 - Simulation of pre-defined planning (aid-to-decision)
 - Automatic planning optimisation within a given time period
- Reconstruction of the actual traffic disturbance (ex post) (from actual demand and road works capacity)
- Help to real-time traffic management (including incidents)

Examples of RWOT screen displays

Screen display for road works spatial definition

aisie d'un chantier - étape 3/3 : Etat des voies							
- Identification							
Nom du scénario :	Scénario1						
Man da mara da da diretirar							
Nom du groupe de chantiers :	Groupe1						
Nom du chantier :	A8_197.8S1						
Etat des voies							
Sens 1	Sens 2						
BAU VI V2 V3	V4 V5 V5 V4 V3 V2 V1 BAU						
Largeur des voies (en mètres 2.9 3.00 3.50 3.0							
Calcul automatique des capacités résiduelles par voie Paramètres							
Capacité résiduelle (en véh./l	neure) :						
1520 1560 1250 1220							
Annuler chantier Annuler	scénario Chantier suivant Calcul						

Examples of RWOT screen displays

Screen display for calculation results presentation

OPTRA : OPtimisation des TRAvaux

To discharge and some short in						
						\frown
Essence (l.)	Gasole (I.)	HC (kg)	CO (kg)	NOX (kg)	Particules (kg)	CO2 (kg)
66,397	507,535	0,351	2,127	0,191	0,191	1 535,930
55,903	440,059	0,305	1,786	0,164	0,164	1 328,009
122,300	947,595	0,656	3,913	0,354	0,354	2 863,940

CONCLUSION: TOWARDS A STANDARD ECO-COMPARATOR

Benefits to the various actors

- Infrastructure owners and operators: cost reductions, mastering of level of service to customers (traffic information and control)
- Users: reduced costs, stress and hazards
- Construction companies: competitive advantage in sound variant design and in tenders including stealth constraints
- Public organisations: promotion of sustainable development objectives

CONCLUSION: TOWARDS A STANDARD ECO-COMPARATOR

The added-value of a standard eco-comparator

- Provides same referential to all actors
- Helps stealth criterion definition and inclusion into contracts
- Helps consistent weighting of the stealth criterion
- Helps bonus-penalty rules setting according to planning compliance
- Introduces the concept of actual impact on traffic accounting compared to the present static lane rental practice

The way can still be long, however the opportunity now exists to promote new stealth-oriented road works management!