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ABSTRACT 
 
With the aim of exploring innovative ways to address road-performance evaluation in 
México, this work provides an approach to some promising methods of analysis based on 
soft computing techniques. A non-conventional methodology that combines Artificial 
Neural Networks - ANNs and Fuzzy Logic - FL, is presented to help making decisions for 
road management systems in project level for existing asphalt concrete pavements, based 
on non-destructive testing data. Here ANNs are intended to mechanical parameters 
estimation of pavements and FL is used to represent qualitative parameters and creating 
rules to facilitate selection of rehabilitation alternatives. 
 
A case study was considered to evaluate benefits, limitations and accordingly, think of its 
applicability to larger scale. The main benefits identified of this methodology for road 
performance assessment are: quantitative and qualitative parameters can be considered 
into analysis; condition assessment and problem definition can be clearly established, 
taking into account most of significant parameters; straightforward multivariate non-linear 
regression analysis is feasible; efficiency is demonstrated trough low computational cost to 
perform real time analyses and reliable results. 

1. INTRODUCTION 

Road condition assessment is an important input for any highway infrastructure 
management system; thus there is a permanent challenge to involve efficient methods, 
techniques and models that instil more confidence about road evaluation problems, to 
obtain rehabilitation solutions attached to real road conditions. 
 
Previous research and case studies have shown that soft computing tools are efficient, 
non-deterministic and very realistic approximations to deal with highway management 
problems. 
 
This report is part of the efforts being made by the “Instituto de Ingeniería” of the 
“Universidad Nacional Autónoma de Mexico, UNAM” to implement soft computing based 
solutions for some civil engineering problems. For road condition assessment in particular, 
successful outcomes have been found in terms of processing non-destructive testing – 
NDT data, parameter identification and potential solutions identification, useful for making 
decision processes. 
 
Beyond identifying limitations and advantages of soft computing methods over traditional 
procedures, this work intend to exploit the ability of ANNs and FL to simulate complex non- 
linear pavement’s problems. Here, both tools are combined as an analysis method close to 
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the representative physical phenomenon of roads, which is evaluated by comparing the 
observed and predicted behaviour. 
 
In order to give a general framework, main concepts about highway management systems, 
road condition evaluation and soft computing tools are presented in the first sections. 
Later, some relevant investigations about soft computing applied to highway engineering 
analysis are described. Finally, soft computing tools applied to structural evaluation of a 
case study is exposed. 

2. PAVEMENT EVALUATION AND MANAGEMENT SYSTEMS 

There are usually three levels of analysis that can be achieved by pavement management 
systems: strategy level to analyse networks or sub-networks managed by any 
organization; program level to plan investments for one or more years, where many 
projects can be selected by priorities; project level to analyse one or a few roads as 
investment alternatives. This article focuses on the latter level, assessing the phases for 
rehabilitation selection process shown in figure 1. 
 

 Phase I: Overall condition assessment and problem definition. 
Define clearly the problems that should be addressed or corrected of the 
existing pavement, based on collected and evaluated data. 

 Phase II: Potential problem solutions 
Identify a set of feasible rehabilitation solutions strategies to deal with 
defined problems. Preliminary designs are developed. 

 

 
Figure 1 – Phases considered for pavement rehabilitation selection process. Adapted from 

AASHTO guide 1993. 
 
According to the National Cooperative Highway Research Program – NCHRP, phase I can 
be established by assessing the following aspects: Structural adequacy related with the 
response of the pavement to traffic loads; functional adequacy related with pavement 
surface features; subsurface drainage adequacy; durability material adequacy; shoulder 
condition; maintenance history; variability of pavement condition within a project; 
miscellaneous constraints like lateral clearance and traffic control restrictions. 
 
The main interest now, is to focus on structural condition, which can be evaluated by layer 
thicknesses and many other parameters. In this way, main criteria of NCHRP to judge the 
structural adequacy of existing pavements are assumed: layer modulus, cracking, rutting 
and shoving distresses. Table 1 summarizes the relevant distresses and severity levels, 
for interstate highways in particular. Additionally, potholes were considered as structural 
damages too. 
  
All these parameters can be determined by means of non-destructive testing. For this 
study, damages and severity levels were determined by visual inspection, rutting by laser 
sensors measurements and strength parameters by Falling Weight Deflectometer-FWD 
tests. Layer thicknesses were determined by means of destructive testing. 
 
Non-destructive techniques produce huge amounts of information, from which pavement 
conditions can be assessed. To carry out this task, in this paper a soft computing 
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approach is proposed both to process information and to model properly pavement’s 
structural system. 
 

Table 1 – Structural condition parameters for pavement assessment 
ADEQUACY LEVEL

 Inadequate  Marginal Adequate

Fatigue Cracking, (% of wheel  path area) >20   5 to 20 <5
Longitudinal  Crackingin in wheel  path (ft/mi)  >1060  265 to 1060 <265

Reflection Cracking width (in) > 0.5  0.25 to 0.5  < 0.5

Transverse Cracking spacing (ft)  < 100  100 to 200  > 200

Rutting, mean depth of both wheel  paths (in) > 0.4  0.25 to 0.4  < 0.25

Shoving (% of wheel  path area) >10  1 to 10  None

Strength Low Mean High

Asphalt Concrete Modulus (psi) 300000 500000 1500000

Cement treated base 250000 600000 1000000

Asphalt treated base 100000 250000 500000

Granular base 15000 30000 40000

Soil  cement 50000 75000 100000

Granular subbase 8000 15000 25000

Coarse Subgrade 7000 12000 20000
Fine subgrade 3000 5000 7000

EVALUATION VARIABLE OR DISTRESS TYPE

STRUCTURAL

 
Adapted from “Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures”. ARA, Inc. y 
ERES Consultants Division NCHRP-TRB-NRC-2004. 

3. SOFT COMPUTING 

This technique merges elements of adaptation, learning, evolution and fuzzy logic, to 
develop “intelligent” programs that allow modelling complex and variable systems. Hence, 
it offers a possibility to involve a more humane way of thinking and reasoning on computer 
programming algorithms. Highway engineering has shown a special interest on Artificial 
Neural Networks and Fuzzy Logic applications, to solve specific problems related with 
pavement evaluation; there are successful experiences that reveal the great potential to be 
considered as an alternate analysis method. 
 
3.1. Fuzzy Logic - FL 
Through FL it is possible to consider fuzzy concepts like more, less, very, low, medium; 
these are in between values of crisp concepts from classical logic such as yes/no; 
true/false, belong/not belong, zero/one. 
 
Some parameters collected to evaluate road conditions are qualitative and therefore not 
suitable for analytical or numerical analysis. That is the case of damage severity levels 
expressed as linguistic variables like adequate, marginal, inadequate, or severe, 
moderate, light, or high, medium, low; these qualities must be considered into analysis to 
establish how serious a problem is, and the feasible solutions which would be more 
appropriate. 
 
FL let overcome this constraint, expressing qualitative parameters in a mathematical way 
to process them, later, by computational means. Membership functions can be defined so 
that a proposition is neither true nor false, but may be in part true and in part false, to any 
degree. 
 
Any distress level cited in table 1 could be represented in classical and fuzzy logic. For 
instance, crisp and fuzzy concept related to fatigue cracking adequacy are shown in figure 
2. Here trapezoidal or triangular functions could be suitable fuzzy logic representations. In 
fact there are many other possibilities. 
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a) classical logic  b) Trapezoidal FL membership functions 
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Figure 2 –Fatigue cracking adequacy representation  

 
3.2. Artificial Neural Networks - ANNs 
ANNs have been deemed as mathematic-statistical computational tools, useful to model 
complex nonlinear problems, either for searching relationships for multivariate analysis in 
regression problems, or to recognize patterns in a data set for classification purposes. 
 
ANNs are inspired on biological neural networks, and especially in the complex structure 
and efficiency of human brain; here intelligence is the result of high connectivity between 
the large amounts of brain neurons. In similar way, ANNs are formed by interconnected 
processing neurons that receive, process and transmit signals or information to others 
which are connected; each link have associated a value called weight, which can be fitted 
to simulate any feature or behaviour in particular. Results of modelling depend on how the 
neurons are interconnected (architecture) and the strength of these connections (weights 
values). 
 
An ANN is a parallel multilayer structure, formed by an input layer, hidden layers and 
output layer; each layer is constituted respectively by input neurons, hidden neurons and 
output neurons, as is shown in figure 3. Complex architectures have been associated to 
nonlinear problems. 
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Figure 3 – Basic configuration of Artificial Neural Network model 

 
There are two stages in ANN models: the first is the training stage, where learning is 
achieved to get knowledge from a data set. The second stage is testing to evaluate the 
ANN capabilities to yield reasonable outputs for new data input sets, different from those 
used during the learning stage. 
 
The learning process, in turn, could be supervised if a desired output is given for the 
specified inputs.  Here connections weights are adjusted until any error criterion is satisfied 
when comparing computed and desired (target) output. Reinforced learning is useful when 
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there are traces about the output for each input. In contrast, unsupervised learning does 
not need desired outputs, because ANN receives inputs or patterns, find out significant 
features and learns how to classify them into suitable categories. 
 
A hard work must be done to identify all elements involved in ANN modelling: Architecture, 
learning rules, error function, input function, transfer function. All those elements depend 
on data base and the type of problem to address. 
 
3.3. Highway Assess Using Soft Computing 
As part of research efforts to apply ANN in pavement maintenance in Sweden, Sundin & 
Braban-Ledoux (2001) reviewed almost 40 articles published from 1987 to 1999 and wrote 
a state of the art about artificial intelligence-based decision to support technologies in 
pavement management. These authors summarize main findings and potential of expert 
systems, ANN, FL, genetic algorithms and hybrid systems for diagnosis, analysis, design 
and choice phases of pavement management decision process. 
 
Unfortunately many of the reported cases were developed using synthetic data, and 
therefore the authors made the following statement: “The real challenge is to develop an 
application that performs significantly better than the models commonly used by pavement 
engineers on the basis of real data collected from field.” 
 
In the last decade, the Texas Department Transportation and the Federal Highway 
Administration have conducted many projects where soft computing tools have been more 
frequently used. For example, Abdallah et al (2000) developed an ANN model to predict 
the remaining life of a flexible pavement, taking into account different agencies criteria. In 
their study, synthetic non-destructive testing data was used to develop the model, and 
await actual data to validate the methodology. 
 
Williams et al (2004) showed that FL was the most appropriate method for processing non-
destructive testing (NDT) data (via data fusion technique), in order to get representative 
values of mechanical parameters of pavement layers determined from different sources. 
Abdallah et al (2005) used this method in some case studies, with real data collected from 
field. 
 
Yella et al (2006) summarized the findings of a large number of research papers using 
artificial intelligence techniques such as neural networks, machine learning, expert 
systems, ease-based reasoning and fuzzy logic, in a wide variety of problems in railway 
infrastructure inspection area. They put special interest on processing NDT information, 
usually performed as signals, images and so on, which often did not show directly the 
infrastructure condition; accordingly, some data needed to be interpreted by a human 
skilled analyst, whose criterion could be unreliable or subjective, since he is challenged by 
many factors. The authors found significant advantages of computer-based techniques to: 
automate the knowledge of analysts, interpretation of large volume of NDT data and to 
improve speed and accuracy of analysis. 
 
There are many other investigations in which soft computing played an important role to 
solve particular problems in highway engineering. For instance, to get structural properties 
of pavement layers, Goktepe et al (2005) mention some studies conducted from 1993 
(Meier and Rix) to 2003 (Terzi, Saltan and Yildirim), in which ANN and FL are used to 
estimate mechanical properties of pavements, such as layer modulus based on NDT 
information. More recent works conducted by Reddy et al (2004; 2006), Goktepe et al 
(2006), Rakesh et al (2006),  Saltan et al (2006; 2007), Sharma and Das (2008), have 
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been focused on finding more accurate and efficient structural models, using optimization 
algorithms and hybrid models for structural condition evaluation. All these studies show the 
exceptional modelling ability of soft computing tools. 
 
Despite the successful experiences obtained, there are still some constraints: Goktepe et 
al (2006) remark the need to be careful with the use of ANN, because causal material 
model and mechanical analysis do not exist to estimate mechanical responses of 
pavements; here results depend strongly on quality and quantity of data set learning. In 
contrast, most authors consider those techniques as approximations that engage all 
mechanic laws that influence natural complex systems difficult to model, without falling into 
simplified assumptions of traditional theoretical models. 

4. SOFT COMPUTING APROACH FOR ROAD-PERFORMANCE ASSESSMENT - A 
CASE OF STUDY 

A road section in Mexico, with available information about non-destructive testing data, 
was considered as case of study; road conservation and monitoring is in charge of 
Secretaría de Comunicaciones y Transportes – Veracruz (Orozco, 2005). Results of 
traditional analysis are available too for comparison purposes. 
 
General characteristics of the analysed road section are presented first; subsequently, 
mechanical parameter identification through ANNs modelling is described; later, the 
inclusion of FL is described to represent pavement’s qualitative parameters and to develop 
fuzzy inference rules for decision-making processes related to rehabilitation alternatives. 
 
4.1. Characteristics of Corridor 
Based on available testing data, and taking into account the response and condition of 
pavement, two types of pavement structures can be identified along the 28 km length of 
analysed road (K112 to K140), as shown in figure 4. 
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Figure 4 - Main features of corridor. (Modified from Orozco, 2005) 
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In the first 8 km and the last 13 km of the road, the pavement is formed by 7 cm of asphalt 
concrete, 12 cm of granular base, 30 cm of cement stabilized sub-base, for a total 
thickness of 49 cm. In the 7 km intermediate zone, the total thickness is about 42 cm 
because the base layer doesn’t exist; instead there is an asphalt base layer of 5 cm thick. 
In this last sector, the pavement exhibits the highest level of deflections, rutting and 
structural distresses. 
 
4.2. Parameter identification 
In this stage, stiffness related parameter is estimated. A common practice to estimate the 
stiffness (modulus) of pavement layers is based on the layer thicknesses of the pavement 
structure and non-destructive deflection testing, which measures the instantaneous 
deflection basin response to an impulse load applied on the pavement surface, similar to 
traffic load. Figure 5 shows a general arrangement for typical impact load deflection test. 
 

 
Figure 5 – Impact load deflection test 

 
Variables needed for parameter identification, were classified as seen in table 2. 
 

Table 2– Variables considered for parameter identification 
Type Variable 

Structural features Layer thickness and depth 
Type of layer material (Poisson ratio) 

Testing 278 Deflection tests (applied load, sensors position, measured deflections) 
Strength Layer modulus (elastic theory traditional analysis) 

 
ANN is proposed to model deflection basin and estimate layer modulus. For this purpose 
input variables are: applied load, layer thicknesses and depth, Poisson ratio and measured 
deflections; layer moduli estimated by elastic theory are deemed as rough outputs.  
 
The first task is to identify the best network architecture to simulate the problem. Using 
actual field data, a sensitivity analysis was conducted to determine all elements involved in 
ANN modelling; as a result reinforced learning shows better performance than supervised 
learning through an ANN with following features: one hidden layer with 4 hidden neurons, 
Jordan recurrent architecture, Jacob enhanced back-propagation rule learning, mean 
absolute error function, dot product input function and sigmoid transfer function. An error of 
1.7% was obtained in less than 2 minutes of processing, demonstrating the accuracy and 
computational efficiency of ANN modelling. 
 
Figure 6 illustrates layer modulus estimated along the analysed road for ANNs training and 
testing stages; comparison with results obtained by traditional elastic theory is made too. 
The comparative analysis indicates the great capacity of ANN model to reproduce the 
pavement response under deflection tests. 
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Figure 6 – Layer modulus estimations (kg/cm2*105) 
 
4.3. Structural condition assessment 
Mapping the actual structural road condition is feasible through an intuitive analysis that 
integrates quantitative parameters (deflection, modulus) and qualitative variables 
(distresses severity levels). 
 
With the aim to involve qualitative parameters into analysis, fuzzy representation of each 
distress adequacy level has to be defined. First, membership functions are proposed to 
map NCRHP criteria; figure 7 shows an example of fatigue cracking representation. 
 
Then qualitative labels are defined to describe any specific condition of pavement: 
excellent, very good, good, fair, poor and dreadful, as specified in the table 3. 
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Figure 7 – Fuzzy representation of parameters 

 
Here rules are defined to describe any specific condition of pavement, ranging between 
two extreme conditions: IF all parameters are adequate, THEN the pavement condition is 
excellent; IF all parameters are inadequate, THEN the pavement condition is dreadful. 
Additional rules for intermediate conditions like very good, good, fair and poor categories 
are defined. 
 

Table 3 – Inference rules 

 
 

A representation of these fuzzy inference rules is presented in figure 8, using only three 
parameters: fatigue cracking, rutting and deflection. Here the condition is rated between 0 
(dreadful) and 1 (Excellent). 
 

 
Figure 8 – Graphical representation of rules defined 

 
Now, a Fuzzy Inference System is used to evaluate pavement’s condition at any specific 
site, by combining all representative parameters. A summary of results is presented in 
table 4. 
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Table 4 – Results of Fuzzy Inference System 
No. SECTOR STRUCTURAL 

CONDITION 
OBSERVATIONS 

1 1K112 to K114.5 Poor Marginal potholes and rutting 
2 K114.5 to K116.5 Very good  
3 K116.5 to K118 Good Marginal potholes 

4 K118 to K119.5 Fair Marginal rutting; eventual low modulus in base layer. 
5 K119.5 to K124 Dreadful Marginal potholes, fatigue cracking and patching; 

inadequate to marginal rutting; low modulus in asphalt and 
subbase layers. 

6 K124 to K127 Poor Marginal potholes, fatigue cracking and rutting.  
7 K127 to K129 Dreadful Marginal to inadequate potholes; marginal fatigue cracking 

and rutting; inadequate shoving; low base layer modulus. 
8 K129 to K133 Very good  
9 K133 to K140 Poor Marginal potholes and patching; low base layer modulus 

 
4.4. Potential Solutions Identification 
Based on NCHRP criteria, a pavement is considered that has failed if any current distress 
level exceeds values specified under the “inadequate” category; in those cases large-scale 
corrective actions are needed. That is the case of sectors No. 5 and 7. 
 
Pavement with one or more structural related distresses in the “marginal” category will 
need any rehabilitation activity soon before pavement reach inadequate structural 
condition. Sector No. 1, 6 and 9 fall into this category. 
 
Sector No. 4 is classified into fair condition, because it exhibits only one marginal damage 
and eventual low base layer modulus; however, solutions depend on the type of distress. 
 
Sectors No. 2 and 8 only need routine preventive actions, and sector No. 3 needs full or 
partial depth repair at specific sites of potholes. 
 
Table 5 shows basic rehabilitation solutions suggested by NCHRP; although these criteria 
are considered appropriate, they do not necessarily take into account the amount and 
diversity of damages, severity levels and stiffness condition of pavement layers. Then, 
additional criteria based on experts and own experiences are involved to increase the 
feasible rehabilitation solutions. 
 
Bearing in mind the above mentioned comments, FL is used again for rules definition 
process in order to facilitate selection of alternatives; below are some rules derived. 
 
Rule 1: IF fatigue cracking is Inadequate, THEN full OR partial depth repair, OR recycling 
Rule 2: IF fatigue cracking OR reflective cracking is marginal, THEN crack sealing  
Rule 3: IF block OR longitudinal cracking is inadequate OR marginal, THEN crack sealing 
Rule 4: IF reflective cracking is inadequate, THEN full or partial depth repair 
Rule 5: IF shoving is inadequate, THEN level up overlay 
Rule 6: IF pothole is inadequate, THEN full OR partial depth repair 
Rule 7: IF Rutting is inadequate, THEN level up overlay OR cold milling OR in situ 
recycling 
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Table 5 – Main rehabilitation strategies for structural distresses 

DISTRESS TYPE 
REPAIR 

SOLUTION 
PREVENTIVE 

SOLUTION 
OTHER SOLUTIONS 

Fatigue cracking Full depth repair Crack sealing 
Partial depth repair, cold milling, 
hot or cold in situ recycling, overlay

Block cracking Crack sealing   
Longitudinal 
cracking 

Crack sealing  
Full depth repair, hot or cold in situ 
recycling, overlay 

Reflective cracking 
Full or partial 
depth repair 

Crack sealing  

Shoving Level up overlay   

Potholes Full depth repair 
Crack sealing 
and seal coating 

Partial depth repair 

Rutting 
Level up overlay 
or cold milling 

 Hot or cold in situ recycling 

Adapted from “Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures”. ARA, Inc. y 
ERES Consultants Division NCHRP-TRB-NRC-2004. 

Finally, integrated solutions for the analysed road are proposed in table 6, taking into 
account the structural condition of pavement, distreses types and severity levels. 

In this way a complete structural evaluation is made, integrating elements from empirical 
knowledge, FL and ANNs. 

It is worth to mention that tradicional analisis conducted in the same corridor recomends 
only one solution: milling and 5 cm overlay throughout the corridor (Orozco 2005). 

Table 6 – Rehabilitation solutions for a case of study 
No. SECTOR FEASIBLE SOLUTION 
1 1K112 to K114.5 Hot or cold in situ recycling, or cold milling 
2 K114.5 to K116.5  
3 K116.5 to K118 Local partial depth repair (potholes) 
4 K118 to K119.5 Hot or cold in situ recycling; structural 

reinforcement overlay. 
5 K119.5 to K124 Full depth repair. 
6 K124 to K127 Hot or cold in situ recycling, or cold milling.  
7 K127 to K129 Full depth repair. 
8 K129 to K133  
9 K133 to K140 Local partial depth repair (potholes) and 

structural reinforcement with overlay 

CONCLUSIONS 

Previous investigations show the exceptional ability of computational intelligence tools for 
modelling highway infrastructure problems related to overall condition evaluation. Efforts 
should be focused to gather actual field data against which novel alternatives to model 
road-performance be tested. 
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Based on previous investigations, theoretical foundations, experience and practice, a non-
conventional way to address structural problems of highways in México is presented. It 
combines different fields of knowledge, involving ANN and FL techniques to analyse 
technical information previously collected along flexible pavement highways. 
 
Here FL is used to account for qualitative parameters representation and for creating rules 
to facilitate selection of rehabilitation alternatives. ANN is proposed for estimating layer 
modulus. The results show its great capacity to reproduce the pavement response under 
deflection tests. 
 
Fuzzy representation of parameters considered in the case of study, along with fuzzy rules 
defined, lead to full description of corridor and to develop recommendations ad hoc to 
particular conditions along the road. 
 
The main benefits of using techniques such as artificial neural networks and fuzzy logic 
are: quantitative and qualitative information collected by different sources along any 
highway can be considered for analysis; overall condition assessment and problem 
definition can be clearly established, taking into account most significant parameters 
through multivariate analysis. Efficiency is achieved trough low computational cost to 
perform real time analysis and accurate results. 
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