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ABSTRACT 

 
Attempts to predict accidents involving pedestrians in road networks in most cases 
are faced with the problem of missing pedestrian counts. A comparison of two 
different procedures is carried out in order to overcome this problem. Missing 
pedestrian traffic counts are substituted with environmental variables derived from 
the adjacent building structure and the surrounding land-use within an area of 
influence. While the building structure is raised alongside each road segment socio-
economic and land-use data are derived within a range of 300 m of each segment. A 
procedure is developed in order to obtain and aggregate the relevant spatial vari-
ables by matching geographical databases. Subsequently the correlation structure of 
the spatial data is analysed. A principal component analysis (PCA) is carried out 
revealing underlying components and reducing the dimensionality of the initial data-
set. Five generalized linear models (GLMs) are computed each with Poisson distri-
buted and negative binomial error structure in order to quantify the interrelations 
between environmental variables and pedestrian accidents. Models based on the 
adjacent building structure and those based on principal components of the 
surrounding land-use reach a similar goodness-of-fit. A model combining building 
structure and the sale areas within reach of 300 m proves to be the best fit model. 

1. INTRODUCTION 

Accident figures are the favoured criteria to quantify road safety. Thorough traffic 
planning implies the assessment of the performance as well as forecasting the safety 
effects of constructive and conceptual measures in road networks. Accident Predic-
tion Models (APMs) are widely used to handle the latter task. Though safety research 
has elicited a multitude of models, the best part of these, predict solely collision 
counts of motorized vehicles. 
 
At the same time non-motorized road-users are involved in more than half of the per-
sonal injury accidents in German cities. As an example, approximately two-thirds of 
all people severely injured or killed in road accidents in the city of Dresden in the year 
2005 were cyclists or pedestrians. Hence the consideration of accidents involving 
non-motorized road-users is crucial for a valid road safety assessment in cities. 
 
Most existing APMs, therefore, seem hardly suitable to determine sufficiently an 
average safety degree for urban roads. One main reason for the difficulty of predic-
ting non-motorized accidents on road segments is the lack of exposure data. While 
traffic counts of motorized vehicles are available for arterial networks in most cities, 
pedestrian and bicycle counts are not. Non-motorized traffic counts are time-con-
suming and costly since they are difficult to automate. As a result, these data exist for 
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particular cross-sections at best and do not fulfil the requirements of a sufficient basis 
for statistical models of road networks. Using motorized traffic counts alone as expo-
sure for accident prediction falls short insofar as non-motorized accident involvement 
strongly depends on the appearance of these modes. 
 
This paper focuses on accidents involving pedestrians. It deals with the possibility of 
partly substituting missing information about pedestrian counts with land-use adja-
cent to road segments. This method is predicated on the basic principle of a strong 
relationship between land-use and traffic generation.   

2. PREVIOUS WORK 

Land-use and its socio-economic factors form the basis of all traffic generation 
models. Thus, the relationship between settlement structure and traffic generation 
has been thoroughly analysed over the past years. Estimates of generated traffic for 
German conditions can be obtained from the pertinent manual by the German Road 
and Transportation Research Association (FGSV) [1]. According to the manual, the 
basic criteria of type and intensity of land-use are population, housing, social 
infrastructure (e.g., schools), work-related infrastructure (e.g., retail jobs) and special 
uses (e.g., cinemas). The traffic data derived from the procedure described in the 
manual can, in fact, only be regarded as rough estimates since the values differ over 
a wide range. For example, the expected number of customers per square meter of 
sales area in shopping malls varies between 30 and 150. In addition, no exact 
information is given about the expected choice of mode according to the type of land-
use. 
 
An & Chen [2] developed an estimation procedure for non-motorized travel demand 
based on a multivariate regression analysis of infrastructural and census data on a 
block level. The correlations between a number of socio-economic, environmental, 
and infrastructural factors and the number of the non-motorized share of the daily 
commute were analyzed for the city of Lexington, Kentucky. The ensuing regression 
model shows the strongest predictive power of employment density, percentage of 
student population, median household income and average sidewalk length together. 
A more general finding of the analysis was that several socio-economic parameters 
are highly correlated and therefore have to be treated carefully when used in 
regression models in order to avoid multicollinearity. 
 
Alrutz & Bohle [3] dealt with pedestrian counts on a finer spatial level and therefore 
analysed the interrelation of pedestrian counts and the use of adjacent buildings on 
urban road segments in several German cities. They classified the surroundings with 
the help of an “urban density” (ratio of built-up street length and total street length 
along the segment multiplied by the number of storages) as well as the “structure of 
use” (ratio of built-up length including retail and the entire built-up length along the 
segment). The correlation results showed large effects between pedestrian traffic 
counts and both the “structure of use” (r = 0.79) and “urban density” (r = 0.56).  
 
Their results were taken up by Monse [4], who investigated several parameters in 
relation to traffic counts and accident counts with pedestrians as well as cyclists 
involved in the arterial urban road network of the city of Dresden (54 segments). In 
order to describe the urban use of each segment the author combined the “structure 
of use” and the “urban density” by multiplying their values. The analysis showed sig-
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nificantly high correlations between pedestrian accidents and urban use (r = 0.70) 
while the relationship between urban use and bicycle accidents was significantly 
weaker (r = 0.33). The average bicycle travel distances exceed those of pedestrians. 
From this point of view it seems logical that the land-use adjacent to a road has a 
lesser influence on bicycle accidents than accidents involving pedestrians. 
 
A first attempt to include a parameter similar to those introduced by Alrutz & Bohle [3] 
and Monse [4] in a generalized regression framework was carried out by Schueller [5], 
who determined the influence of free speeds on the frequency and severity of 
accidents on urban major roads in Dresden. Schueller once again modified the 
approach by differentiating the built-up length by four different structures (residential, 
retail, combined residential and retail, industrial). A parameter (KLF) was computed 
for each segment between two major Intersections in the following manner: 
 

 
 
where: 
KLF = parameter characterizing adjacent structure of building uses  
Lind = built up length with industrial use (total of both sides) 
Lres = built up length with residential use ( “ ) 
Lret = built up length with retail ( “ ) 
Lres,ret = built up length combining residential use and retail ( “ ; in the same building) 
Lseg = segment length 
 

The weighting factors used in the formula were obtained through preliminary regres-
sion analyses for a data set of road segments in Dresden. Schueller used the KLF 
values for predicting accidents with personal injury as well as nonmotorized accidents 
on a reduced dataset of road segments. A more specific use for analysing traffic 
safety of pedestrians within the entire main road network is yet to follow.  

3. OBJECTIVE AND METHODOLOGY 

The objective of this analysis is to show and compare possible approaches of incor-
porating land-use data in safety models and surveys in order to improve the pre-
dictive power for non-motorized accidents. Besides the above-mentioned procedure 
of classifying the length and use of buildings situated alongside the road segment, an 
alternative approach is developed using socio-economic and land-use data of the 
area surrounding each segment. 
 
The benefit of this second approach lies in the availability of data. Experience with 
German data shows that information about the exact use of buildings is rarely avai-
lable, especially if retail and residential uses are combined in one building. For this 
reason the use of the built-up lengths in most cases has to be assessed through ana-
lysing aerial images or on-site surveys. On the other hand, land-use and socio-eco-
nomic data are normally collected as a basis for traffic generation models. The use of 
the same database ensures a high applicability and enables further development as 
well as automation in the scope of future traffic planning processes.  
 
Two different types of environmental data are therefore compared: 
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- Information concerning buildings adjacent to road segments and their use.  
- Socio-economic and land-use data within a defined distance of road segments. 
 
In a first step, the geographical data from the different sources are processed in order 
to obtain a network model merging infrastructural, traffic-related, socio-economic, 
land-use and accident data. Subsequently the focus will lie on the methodology of 
assigning the socio-economic and land-use data (spatial) to the respective road seg-
ments (linear).  
 
The spatial indicators derived are analysed in respect of their interdependencies by 
computing correlations and running a Principal Component Analysis (PCA). Finally, 
the parameters characterizing adjacent urban structure are included in Generalized 
Linear Models (GLMs) in order to quantify the interrelations with non-motorized acci-
dent counts. 

4. DATA 

4.1. Road network 

The study is deals with the urban main road network of Dresden, a German city with 
a population of approximately 500,000. 
 
In a first step, the arterial road network is subdivided into road segments and inter-
sections. Intersections of two or more main roads are not the subject of this survey 
and, therefore, are excluded from the digital network. Preliminary analyses showed a 
considerable influence of intersections on the number of accidents over an adjacent 
road length of 50 m. In order to avoid bias in the models the first 50 m of road length 
next to intersections were also omitted from the network.  
 
Also accidents at intersections with minor roads are excluded from the sample. Fur-
ther analyses show only marginal effects of these minor intersections beyond their 
geographical boundaries. For this reason no further adjacent segment length was 
omitted as at major intersections. If infrastructural variables do not change before and 
after minor intersections the segment is not subdivided. 
 
The variables concerning traffic and road infrastructure recorded for each segment 
are listed in Table 1. In cases where any of these variables change between two 
major intersections, the initial segment is divided into further sub-segments. 
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Table 1 – Traffic and Road infrastructure variables for road segments 

variable description level of measurement

length segment length  (km) continous

AADT average annual daily traffic (veh./24h) continous

Tram tram on segment (yes / no) dichotomous

TramNo number of trams per day (veh./24h) continous

TramStops daily number of trams stopping at stations (100 stops/24h) continous

BusStops daily number busses stopping at Bus-stops (100 stops/24h) continous

lanes numbers of lanes (2 or less / 3 or more) dichotomous

median central reserve (yes / no) dichotomous

BikeFac bicycle facility (bicycle path / bicycle lane / none) categorial

Park parking on the segment (yes / no) dichotomous  
 
By nature, accidents are statistically rare occasions and counts only appear as inte-
gers. Consequently, short segments lead to large variations of accidents per kilo-
metre. Segments shorter than 50 m were therefore also excluded from the database. 
 
As a result, 668 segments with a total road length of 283 kilometres remain for the 
subsequent analyses. Trams travel on roughly 87 kilometres of this total road length. 
 
4.2. Accidents 

Accident counts are taken from the digital database maintained by the police. The 
analysis includes all accidents with pedestrians or with bicycle involvement during the 
time period 2004 to 2008.  
 
A total of 536 accidents involving pedestrians (470 personal injury accidents) 
occurred on the remaining road segments during the five-year-period.  
 
4.3. Socio-economic and land-use data 

Two different geographical databases are used for generating the socio-economic 
and land-use indicators: On the one hand, the digital geographical model (DLM) 
provided by the land surveying office of Saxony; on the other, the digital geographical 
basis of the traffic generation model of the municipality of Dresden. The DLM con-
tains information concerning boundaries of plots of land and in some cases informa-
tion about their land-use (e.g., schools, universities, residential use, and railway 
stations).  
 
The database of the traffic model contains the boundaries of 529 traffic analysis 
zones (TAZs) and the corresponding socio-economic and land-use data. The data 
drawn from the TAZ database include population numbers, numbers of workplaces, 
school and university places as well as sales areas. The population numbers are dis-
aggregated according to patterns of traffic-related behaviour (VHG). Table 2 contains 
a detailed list of variables extracted in the following steps.   
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Table 2 – Data drawn from the traffic analysis zones 

attribute description

VHG 1 population number age 0-5 years

VHG 2 population number age 5-17 years

VHG 3 population number age 18-64 years, unemployed, no car available

VHG 4 population number age 18-64 years, unemployed, car available

VHG 5 population number age 18-64 years, employed, no car available

VHG 6 population number age 18-64 years, employed, car available

VHG 7 population number age 65+ years, no car available

VHG 8 population number age 65+ years, car available

Pop total population number

Emp number of employed

Stud number of students

WoSer number of workplaces - service 

WoPro number of workplaces - productive

Scho school places

Kind Kindergarten places

Sale sales area (m2)

Cars number of registered cars
 

 
First of all, both databases are matched geographically by allotting each built-up plot 
of land to the corresponding traffic analysis zone. The socio-economic and land-use 
data are then proportionally redistributed over all plots within each TAZ. The number 
of school and university places are assigned to plots with these specific uses, while 
all other data are distributed over the remaining plots (mixed use). By utilizing the 
aggregated plots, instead of the entire area of the TAZ, a more plausible distribution 
of data is achieved. This way unexploited areas and those with unsuitable land-use 
are excluded from the determination. As an additional consequence, the bias caused 
by inaccurate geographical information is reduced.  
 

 
Figure 1 – Matching of traffic analysis zones and built-up plots of land 

 
The principle is shown in Figure 1 using the example of a selected traffic analysis 
zone (marked red). Without projecting the data onto the related plots of built-up land, 
the data would be uniformly spread across the area of the TAZ. Subsequent steps of 



7 

IP0258-Aurich-E 

analysis concerning data within a certain range of corresponding road segments 
would, thus, be most certainly biased. 
 
The allocation of the zonal attributes to corresponding road segments follows the 
basic idea of analysing the potential of non-motorized traffic within a sphere of influ-
ence. The attributes are extracted by generating concentric buffers around each road 
segment with an appropriate radius. A convenient distance is therefore chosen at 
300 m, referring to a common accessibility criterion for bus-stops.   
 

 
Figure 2 – Allocation of zonal attributes with concentric buffers 

 
The zonal attributes are computed proportionally according to the ratio of the part of 
the plot within the buffer and the entire area of the plot: 
 

 
 
where: 
Xbuf = total attribute allocated to buffer 
Ai,buf = fraction of plot “i" within buffer 
Ai = total area of plot “i" 
Xi = total attribute of plot “i" 
 
The attributes allocated are then transformed to densities through division by the 
segment length in order to account for varying road lengths. However, this method 
bears a problem in that short segments will have proportionally higher densities, as 
every segment buffer draws a semicircle at each end of the segment. The area of this 
part of the buffer is constant and therefore has a greater effect on short segments 
than on long ones. This aspect will have to be kept in mind when interpreting the 
model results.   
 
The use of buffers leads to multiple allocations of data since the buffers overlap. In 
common four-step traffic demand models, each trip is uniquely assigned to a certain 
route, i.e., road link. Within the approach described this is not the case, due to these 
overlaps. The socio-economic and land-use data derived within the sphere of influ-
ence can therefore not be interpreted as in the scope of traffic generation, but rather 
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as a non-motorized potential. This inaccuracy is due to the need for economy when 
carrying out a network-wide analysis and is knowingly accepted. As a consequence, 
the variance of the related accident counts is most likely to increase whereas the 
diversity of the allocated socio-economic and land-use data among the road seg-
ments decreases. This, again, has to be considered when interpreting the results of 
the PCA as well as the GLMs.      

5. STATISTICAL DATA ANALYSIS 

5.1. Correlation analysis  

The Pearson correlations are computed between the individual socio-economic and 

land-use density variables within the sphere of influence (300 m) of road segments. 

In addition the variable KLF is included in the analysis. The corresponding correlation 

matrix is shown in Table 3. 

 

Table 3 – Correlation matrix of socio-economic and land-use variables (densities) 
Pearson

Correlation
VHG 1 VHG 2 VHG 3 VHG 4 VHG 5 VHG 6 VHG 7 VHG 8 Emp Pop WoSer WoPro Kind Scho Sale Cars KLF

VHG 1 1

VHG 2 ,936** 1

VHG 3 ,767** ,679** 1

VHG 4 ,806** ,767** ,965** 1

VHG 5 ,906** ,860** ,901** ,883** 1

VHG 6 ,908** ,955** ,728** ,833** ,878** 1

VHG 7 ,367** ,509** ,467** ,508** ,569** ,567** 1

VHG 8 ,385** ,570** ,385** ,486** ,512** ,638** ,956** 1

Emp ,933** ,950** ,805** ,873** ,942** ,988** ,584** ,614** 1

Pop ,873** ,907** ,853** ,911** ,938** ,951** ,719** ,724** ,973** 1

WoSer ,103** ,047 ,388** ,306** ,283** ,077* ,405** ,252** ,147** ,261** 1

WoPro ,075 -,014 ,118** ,109** ,101** ,066 ,064 ,020 ,080* ,081* ,374** 1

Kind ,505** ,553** ,455** ,508** ,520** ,563** ,395** ,404** ,564** ,567** ,133** ,025 1

Scho ,111** ,109** ,392** ,382** ,226** ,147** ,260** ,187** ,177** ,264** ,217** ,005 ,197** 1

Sale -,037 -,019 ,048 ,043 ,018 -,004 ,160** ,130** ,003 ,049 ,487** -,004 ,032 -,042 1

Cars ,819** ,913** ,666** ,763** ,839** ,943** ,729** ,777** ,935** ,940** ,220** ,084* ,556** ,168** ,056 1

KLF ,557** ,537** ,475** ,497** ,530** ,528** ,281** ,291** ,543** ,532** ,159** ,041 ,378** ,131** ,049 ,508** 1

* p < 0.05, ** p < 0.01  
 

The highest correlations can be noted between the individual population groups 

(VHG 1–8, Pop, Emp) as well as the number of registered cars (Cars), Kindergarten 

places (Kind) and all population variables. These high correlations are expectable 

and have to be kept in mind for further regression analyses. In order to avoid multi-

collinearity either only one of these variables should be included at a time, or the 

model design will have to account for interactions. 

 

Both the workplace-related variables correlate significantly with population variables, 

whereby the densities of service-related workplaces (WoSer) show higher values 

than the production-related (WoPro). Though service-related workplaces mostly 

correlate significantly, the coefficients do not reach very high values. It should be 

considered, that even small correlations become significant at a sample size of 
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n = 668. The highest coefficient results from the correlation between the densities of 

service-related workplaces and sales area (Sale), at approximately 0.5. Densities of 

production-related workplaces seem to be distributed independently from further 

variables considered. 

 

The densities of sales area (Sale) only show a few noteworthy correlations. Except 

for its correlation with service-related workplaces (WoSer), this variable can also be 

regarded as distributed independently from the othervariables analysed.  

 

The structure of the adjacent buildings (KLF) correlates significantly with all variables 

except for production-related workplaces (WoPro) as well as sale area (Sale). A 

combined regression model including the zonal attributes as well as the structure of 

adjacent buildings should therefore be limited to these three variables besides 

variables concerning road infrastructure and traffic parameters. 

 

5.2. Principal component analysis (PCA) 

The aim of PCA is to find a set of latent variables underlying the data observed. It can 

be used for a reduction of dimensionality in that an original set of variables is trans-

formed into a substantially smaller set of underlying factors, so called principal com-

ponents. Depending on the chosen type of transformation the components can be 

constructed orthogonally. Hence the use of such principal components instead of the 

original variables prevents multicollinearity in a subsequent regression model. On the 

downside components are not self-explanatory which may lead to uncertain expla-

nations in some cases. Moreover every kind of data reduction leads to a loss of 

information. For detailed information the reader is referred to Jolliffe [6]. 

 

In the case at hand the procedure is based on the Pearson correlations of the original 

variables. To allow a valid PCA, the correlation structure has to meet certain 

requirements. In the present case, the suitability of the data is determined with the 

Kaiser-Meyer-Olkin measure of sampling adequacy (KMO), Haitkovsky’s Χ2, and 

Bartlett’s test.  

 

For conceptual reasons and in order to fulfil the requirements the number of variables 

analysed is reduced to five socio economic and land-use density variables: 

population (Pop), employment (Emp), registered cars (Cars), total workplaces (Wor, 

sum of WoSer and WoPro), and sales area (Sale). With this combination both 

Bartlett’s test and Haitkovsky’s Χ2 are highly significant (p < 0.001) while the KMO 

attains a value of 0.7 (“mediocre” according to [7]). 

 

The underlying components are computed as linear composites of the original vari-

ables obtained through orthogonal transformation. The transformation is defined in 

such way that the variance of the first principal component is maximized. Thus it 

accounts for the most possible variability within the original data. Each following 

component is then constructed in the same manner under the constraint of being 
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orthogonal to the former components. After defining the components, a subsequent 

rotation can be taken out in order to enable a differentiated interpretation of the 

components. An orthogonal rotation (VARIMAX) was chosen in this case. The sui-

table number of components is estimated with the help of so called scree plots and 

eigenvalue criteria. 

 

The original set of five variables is reduced to two components (C1, C2). Together 

both components account for 87 % of the variation within the initial variables. The first 

component (C1) is highly related to the population variables (Pop, Emp, Cars) and 

can therefore be interpreted as “population component”. The second component (C2) 

is mainly affected by the economic variables (Wor, Sale), being referred to as “econo-

mic component” within the further analysis.  

 

It is important to state that the results of a principal component analysis cannot be 

extrapolated beyond the analysed sample. Generalization can only be achieved by 

revealing the same component structure in different samples. 

6. GENERALIZED LINEAR MODELS 

In general accidents are rare random events that are assumed to be Poisson distri-

buted. Hence regression models based on normally distributed errors and assuming 

homoscedasticity are inappropriate for analysing accident frequency. In safety 

research it has therefore become common practice to use generalized linear models 

(GLM).  

 

Generalized linear models overcome the restrictions of the general linear model in 

that the stochastic component (error term) can follow other distributions than the 

normal and the link between the stochastic and the systematic component can be a 

function other than identity. The error distribution can be any member of the expo-

nential family. The reader is referred to McCullagh & Nelder [7] for detailed infor-

mation about generalized linear models. 

 

It appears that pure Poisson models of accident counts tend to be affected by over-

dispersion. In these cases the variance exceeds the expected value. According to 

Maher & Summersgill [8] there are several possible reasons for this phenomenon: 

unobserved, explanatory, variables effectively adding to the random error, errors in 

the explanatory variables, and mis-specified models. Regardless of the possible rea-

sons, overdispersion leads to erroneous parameter estimates as well as confidence 

intervals and should therefore be accounted for. 

 

It has therefore become state-of-the-art to use models based on a negative binomial 

error structure (NB models, also called Poisson-gamma models). The negative bino-

mial distribution can be regarded as a combination of a Poisson and a gamma distri-

bution. In this case the Poisson distribution accounts for the variations due to the ran-
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dom nature of accidents, while the variations caused by unobserved variables are 

expected to be gamma distributed.  

 

A logarithmic link function is chosen for the models. The link function can be derived 

from the exponential form of the Poisson distribution. The resulting log-linear struc-

ture ensures non-negative values and therefore best accounts for the characteristics 

of count data. This leads to the following general model equation: 

 

 
 

where: 

µ = expected number of accidents (per segment and year) 

η = linear predictor 

α = intercept 

βi = coefficients  

Xi = variables 

 

5.3. Modelling approach 

All models relate to the total number of pedestrian accidents on each segment within 

the five-year-period. In the first step a model is developed including the traffic-related 

and infrastructural variables listed in Table 1. Starting from this point, subsequently 

three models are developed differing in the type of environmental data used to 

substitute missing pedestrian counts: the structure of adjacent buildings along the 

road segments (KLF), land-use and socioeconomic data according to Table 2 and the 

principal components derived from land-use and socioeconomic data within the 

sphere of influence of each segment. Finally the best model is generated by com-

bining different types of environmental variables with respect to the former correlation 

analysis. 

 

Both Poisson and negative binomial models are computed. Inspection of the Poisson 

model allows an assessment of the unexplained variance due to unobserved expla-

natory variables. On the other hand the coefficients and confidence intervals compu-

ted with the NB-models are regarded as being more reliable.  

 

The variables are inserted stepwise, beginning with the null-model only containing 

the intercept. The decision of whether a variable is to be retained or omitted from the 

model is made at a significance level of 95 %. Exposure data (length, AADT) are 

included as logarithms in order to ensure the condition of zero accidents without 

traffic and at a segment length of zero. Even though a linear relationship between 

number of accidents and segment length seems logical, preliminary analyses have 

shown a decreasing accident density with increasing length.  

 

The models containing the different types of variables are compared with the help of 

Akaike’s information criterion (AIC) as well as Pearson’s X2 statistic. Akaike’s infor-
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mation criterion is based on the maximized likelihood. The AIC not only rewards 

goodness-of-fit but also penalises the number of estimates included in the model. A 

detailed explanation is given in Burnham & Anderson [10]. In the case of an 

adequate model the ratio of Pearson’s X2 statistic and the degrees of freedom is 

supposed to be close to one. Values exceeding one indicate overdispersion.  

7. RESULTS 

The model results are listed in Table 4.  

 

Table 4 – Accident models of accidents involving pedestrians 

min. max.
distribution

 parameter

Pearson

X2
AIC

Pearson

X2
df X2/df

null intercept -1.830 *** 0.075 -1.977 -1.682 - 2.525 667.16 1621 2018.85 667 3.027

basic model intercept -7.574 *** 0.920 -9.378 -5.770 < 0.001 0.800 663.77 1421 1090.15 664 1.642

ln(length) 0.543 *** 0.082 0.383 0.704 < 0.001

ln(AADT) 0.626 *** 0.097 0.436 0.817 < 0.001

TramStops 0.229 *** 0.026 0.179 0.280 < 0.001

intercept -8.642 *** 0.918 -10.441 -6.842 < 0.001 0.590 662.90 1379 956.04 663 1.442

ln(length) 0.668 *** 0.082 0.506 0.829 < 0.001

ln(AADT) 0.673 *** 0.095 0.486 0.860 < 0.001

TramStops 0.178 *** 0.024 0.131 0.225 < 0.001

KLF 0.871 *** 0.131 0.615 1.127 < 0.001

intercept - 6.721 *** 0.929 -8.540 -4.890 < 0.001 0.575 662.11 1381 975.55 662 1.474

ln(length) 0.678 *** 0.082 0.516 0.838 < 0.001

ln(AADT) 0.550 *** 0.097 0.358 0.741 < 0.001

TramStops 0.188 *** 0.023 0.141 0.234 < 0.001

C1 (pop.) 0.319 *** 0.057 0.205 0.432 < 0.001

C2 (eco.) 0.222 *** 0.049 0.125 0.317 < 0.001

intercept -6.832 *** 0.946 -8.687 -4.977 < 0.001 0.705 661.86 1396 1018.14 662 1.538

ln(length) 0.646 *** 0.084 0.482 0.810 < 0.001

ln(AADT) 0.514 *** 0.101 0.317 0.712 < 0.001

TramStops 0.194 *** 0.025 0.144 0.244 < 0.001

VHG 3 0.007 *** 0.003 0.002 0.013 < 0.001

WoSer 0.044 *** 0.012 0.020 0.068 < 0.01

combined intercept -8.044 *** 0.898 -9.804 -6.285 < 0.001 0.483 662.23 1367 910.87 662 1.376

ln(length) 0.705 *** 0.081 0.546 0.865 < 0.001

ln(AADT) 0.608 *** 0.094 0.425 0.791 < 0.001

TramStops 0.168 *** 0.023 0.123 0.213 < 0.001

KLF 0.872 *** 0.126 0.625 1.119 < 0.001

Sale 0.070 *** 0.019 0.033 0.107 < 0.001

a

b significance of model effects (based on Likelihood-ratio-test)

estimation based on adjusted negative binomial distribution

Wald-test of coefficients * p < 0.05; ** p < 0.01; *** p < 0.001

principal 

components

adjacent 

buildings

Poisson distributionnegative binomial distribution

coefficienta

land-use + 

socioeconomic

model 

(Upe =538, n=668)
parameter

standard

error
pb

95% - confidence interval

 
 

Beside the exposure (AADT and length) the basic model only includes the number of 

trams stopping per day on the segment (divided by 100). The other parameters listed 

in Table 1 either do not prove significant or are highly correlated with environmental 

parameters associated with greater model effects. For example the dichotomous 

variable representing parked cars in the segment lost their significant model effects 
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as soon as any of the three types of environmental variables were included. The 

number of lanes also does not prove to be significant. Here as well it has to be kept 

in mind that this parameter correlates highly with AADT. 

 

A comparison of the three different types of environmental variables shows the 

highest model effects and the best goodness-of-fit when using the adjacent building 

structure (KLF). The use of the principal components derived from the land-use and 

socio-economic structure raised in concentric buffers leads to similar results concer-

ning goodness-of-fit, while the initial socio-economic and land-use variables do not 

reach an effect at this extent. Nevertheless they prove highly significant.  

 

These results suggest that pedestrian traffic can be characterized either with the help 

of the structure of the built-up area facing the road or the land-use and its occupation 

within a certain range of influence. However there are differences between the two 

models that have to be considered. While the coefficients of the length as well as 

stopping trams have comparable values in both approaches, the AADT coefficient 

does differ at a noticeable amount (0.668 versus 0.550).  

 

Finally the best goodness-of-fit is achieved by joining both adjacent buildings as well 

as land-use data in a “combined” model. The selection of the land-use variables is 

based on the correlation matrix (Table 3) in order to avoid multicollinearity. There are 

only low correlations between KLF and sales area (Sale), service-related workplaces 

(WoSer), production-related workplaces (WoPro), as well as school places (Scho). 

The two latter variables had already proved to have insignificant effects during deter-

mination of the land-use model and were therefore discarded. The two remaining 

variables show similar (highly significant) model effects, so the variable sales area 

(Sale) is included due to its insignificant correlations with KLF.  

 

The difference in AIC between the “combined” model and the “adjacent building” 

model of (∆ = 8) can be interpreted as the “adjacent building” model having con-

siderably less empirical support than the “combined” [10]. The “combined” model can 

be denoted as follows: 

 

 
 

where: 

µ = expected number of accidents (per segment and year) 

length = segment length excluding 50 m before and after major intersections (km) 

AADT = average annual daily traffic (veh/24h) 

TramStops = daily number of trams stopping at stops (100 Trams/24h) 

KLF = building structure along the road segment ( - ) 

Sale = density of sales area within 300 m of the segment (m2/km) 
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In all five models the coefficient of the exposure length falls below a value of one. 

Since the segment length is included in the form of a logarithm in the exponentially 

transformed predictor, a coefficient between zero and one marks a declining increase 

in accident number with growing length. Subsequently long segments show propor-

tionally fewer accidents than short ones. This effect is likely to have its origin in urban 

network structures. Segments near the centre of cities tend to be interrupted by 

intersections and change their characteristics more often than road segments 

towards the periphery. This happens especially in radial networks. It is likely that 

higher crash frequencies on short segments therefore depend on the functional 

complexity of urban central areas. This is assumingly why the coefficients in the 

environmental models exceed the value estimated in the basic model, as they partly 

account for the complexity of adjacent land-use. Accordingly, the combined model 

features the highest coefficient value.  

8. DISCUSSION 

According to the model results environmental data (socio-economic, land-use, 

adjacent building structure) have proven to be partly able to substitute missing 

pedestrian count data within the scope of accident prediction modelling. An exact 

evaluation of the extent of substitution cannot be carried out since it would require 

area-wide pedestrian counts. 

 

The two different kinds of data both serve in explaining variance in pedestrian acci-

dent counts. While the building structure is easily computed, the environmental data 

within a range of 300 m affords further statistical treatment in order to account for the 

correlation structure.  

 

The advantage of using socioeconomic and land-use data lays in its availability inso-

far as this information is held for traffic demand models. Spread and detail of digital 

geographical data, moreover, are constantly increasing and a development of more 

exact procedures for the assignment of these attributes to road networks is likely to 

produce better estimates of risk factors. Using these spatial data might be a possi-

bility for developing integrated traffic planning tools combining traffic demand model-

ling and safety assessment at an early stage of planning.   

 

As stated before, principal component analysis assumes the analysed sample as 

being the entire population. Hence the results can only be extrapolated beyond a 

specific survey by revealing the same or at least comparable components in further 

samples. A similar problem arises with the use of statistical modelling in general. The 

models described are gained by an analysis of one city and therefore depend on its 

specific structure of land-use. In order to verify these specific results further surveys 

need to include data from different towns.   
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