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ABSTRACT   RÉSUMÉ 
 
The design process of asphalt pavements according to the German guideline RDO 
Asphalt 09 [1] based on a quasi-semi-probabilistic method. The traffic loading and 
temperature conditions (both are relevant input parameters for the design process) will be 
considered as probabilistic parameters. These parameters will be used within the 
computational design process in terms of empirical distributions. Other relevant input 
parameters for the design process in particular all the material properties and layer 
thicknesses will be considered as deterministic input parameters. For the improvement of 
computational accuracy concerning design of new asphalt structures and calculations the 
residual structural life of asphalt structures can be realized by using the purely probabilistic 
method. Furthermore it is possible to determine the probability of failure of the asphalt 
structure. This is an important innovation in the design process of asphalt pavements.  

1. INDRODUCTION 

A significant step towards a more reliable and economically as well as environmentally 
sustainable design of asphalt pavements has been made with the German guideline for 
the design process of asphalt pavements (RDO Asphalt 09) [1]. The underlying 
methodology in the RDO Asphalt 09 [1] enables to consider significant input parameters 
which influence the durability of pavement structures. One of the most important 
parameters is the traffic loading. These will be considered in the design process by axle 
load distributions. Thus, stresses and strains depending on the individual axle loads can 
be calculated and estimated within the framework of necessary proofs.  
 
Within the design process of asphalt pavements the relevant material properties will be 
considered by the material-specific stiffness-temperature functions and the fatigue 
functions. The relationship between asphalt temperature and asphalt stiffness is realized 
by special temperature profiles. A procedure for individual consideration various 
parameters on the stresses and strains of asphalt pavements is provided to the road 
construction engineer with the asphalt RDO 09 [1]. Thus, the thickness of the construction 
layers can be designed accordingly. However, each user must be known that the precision 
of the calculation result depends on many different factors. These include: 

• the appropriated method of calculating  
• the appropriated rheological models for the road construction materials  
• the quality of laboratory experiments to capture and describe the material 

parameters for the rheological models 
• the quality of description of load conditions including their forecast  

 



IP00413-Kayser-E 2 
 

These uncertain factors will be considered by a safety factor and a shift factor. While the 
safety factor collected all non exact loading conditions (for instance: load breaks, influence 
of loading rate, load function, etc.), the shift factor considered the imprecise assumptions 
of the material properties (for instance: stiffness-temperature function, fatigue function, 
thickness of structure layer, bearing capacity, etc.) as well as the imprecise results in 
consequence of simplified model assumptions and calculation methods.  
 
The current quasi semi-probabilistic procedure has to be transferred in a purely 
probabilistic procedure to consider the scatters of the material properties in the design 
process adequately. Therefore, the input parameters and material properties will be 
considered as random variables and described exemplary by probability density functions 
and distribution functions respectively. Moreover a procedure for classification of these 
random variables has to be defined. This ensures that always the same distribution results 
follow from the same sample. With the help of the probabilistic procedure, the probabilities 
of failure of asphalt structures can also be calculated. The Calculation of probability of 
default is an important innovation in the design process of asphalt pavements. Therefore, 
the user will be provided a tool that allows considering individual need of security.   

2. STATUS QUO OF THE RDO ASPHALT 09 

The current version of the design process according to RDO Asphalt 09 [1] can be 
described as a quasi semi-probabilistic procedure (Figure 1). The computing process is 
based on empirical distributions concerning the input parameters traffic loading and 
temperature conditions. 
 
The entire spectrum of traffic loads is described by a statistical distribution of 11 axle load 
classes (from 2 t until 22 t with a class range of 2 t) [2]. The reference value of every axle 
load class is defined by the upper class limit.  Altogether, three different axle load 
distributions will be considered currently. 
 
The temperature conditions that could occur will be considered by temperature profiles 
according the RDO Asphalt 09 [1]. These temperature profiles are depending on the 
surface temperature. The full range of surface temperatures has been classified into 13 
temperature classes with a constant class range of 5 K [3]. The reference value of every 
temperature class is the average temperature. The probability of occurrence is defined by 
a statistical distribution of the 13 temperature classes. Furthermore, the different German 
climatic conditions will be considered using different surface temperature distributions and 
a pavement temperature map respectively.  
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Figure 1 - Schematic illustration of the procedure of the design process of asphalt 

pavements [3]. 
 
The input parameters axle load and temperature conditions are discrete random variables 
and can be represented as set of special value of random variable in following form: 
 

}v,...,v,v{V 1121=              (1) 
}t,...,t,t{T 1321=              (2) 

 
Where T, V = random variable (set of all temperature conditions, of all axle loads); ti, vj = 
special value of random variable (temperature state with i=1D13, axle load state with 
j=1D11). 
 
The number of all necessary realisations of the combined random variables (load 
conditions) results from the Cartesian product of set V and T. 
 

}b,...,b,b{TVB 14321=×=             (3) 
 
Where B = combined random variables (set of all load conditions); ba = special value of 
combined random variables (load condition with a=1D143). 
 
Altogether 143 values (load conditions) will be considered according to the RDO Asphalt 
09 [1]. The input parameters axle loading and temperature conditions will be collected and 
considered using empirically determined distributions according to the current version of 
the RDO Asphalt 09 [1]. Other input parameters, for example the material properties or the 
thickness of the pavement layers and full-depth asphalt pavement respectively will be 
described by deterministic values.  
 
The stiffness-temperature function that is approximated from laboratory test results will be 
used for calculating stiffness profiles in the pavement structure [4]. In a similar procedure 
the fatigue function will be determined by approximation the test results. Both functions are 
only mean value functions of the appropriate underlying samples [4]. 
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The scatters / variability of the material properties and their influence on the results of the 
design process will be unaccounted in the current procedure. The effects of this scatters / 
variability will be considered using a safety factor. The thickness of full-depth asphalt 
construction will be also defined as a deterministic value. In contrast to the stiffness 
modulus and the fatigue properties the absolute minimum (instead of the average value) of 
thickness of full-depth asphalt construction will be used in the current design process.   
 
According to the RDO Asphalt 09 [1] the inbuilt thickness of full-depth asphalt construction 
shall not be less than the calculated thickness. The deformation parameters of the 
unbound and hydraulically bounded materials that are necessary for the design procedure 
will be used as deterministic values in the current version of the RDO Asphalt 09 [1]. The 
scatters of these parameters will also be neglected and their influences will be considered 
by the safety factor. 
 
For the set of all load conditions B with B = b1 D b143 the stresses and strains will be 
calculated in all authoritative proof points using the multi-layer theory. Following the 
necessary proofs will be conducted.  At this, evidence is presented for sufficient thickness 
of full-depth asphalt construction. The necessary proofs are:  

• Fatigue proof of asphalt  
• Fatigue proof of hydraulically bound subbases  
• Deformation proof of unbound subbases and formation  

3. PROBABILISTIC PROCEDURE  

3.1. Principles 

The relevant parameters that are defined as random variables essentially are shortly 
described in section 1 and 2. The random variables have to be classified as parameters 
that are variable relating to an object (object variable) on the one hand and as variables 
that are constant relating to an object (object constant) on the other hand. Object constant 
variables are random variables that are local changeless relating to a pavement structure 
with the length L. This includes for example the temperature profiles, the surface 
temperatures as well as the axle loads.  In contrast, object variable random variables are 
parameters that are not restricted to any particular variables referring to a pavement 
structure with the length L. This includes for example the thickness of pavement layers and 
of full-depth asphalt construction respectively, the stiffness modulus of asphalts and the 
fatigue behaviour (allowed number of load cycles referring to a defined elastic stain). The 
variability of these state variables, which are defined as random variables, results from 
inhomogeneity of the pavement materials. Furthermore, the scatters of these state 
variables can be caused by paving technology. In any case, this variability should be taken 
into account in the pavement design process. The distinction between object variable 
variables and object constant variables is necessary for calculating probability failure. 
 
Describing random variables by probability density functions and distribution function 
respectively are the basic principle to use the probabilistic procedure in the course of the 
pavement design process. The probability density functions and distribution functions 
respectively can be directly determined empirically from the sample when the sample size 
is large. An empirical determined probability density functions and distribution function 
respectively can be caused large inaccuracies of the model using small sample size. In 
this case, a stochastically modelling of the random variables using theoretically probability 
density functions and distribution functions respectively is necessary. 
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3.1.1. Classification of random variables 

The pavement design process according to the RDO Asphalt 09 [1] based on a numerical 
algorithm. Thus all input variables (parameters and boundary conditions) are precise 
numerical values.   
 
The state variables (thicknesses of pavement layers and of full-depth asphalt construction 
respectively, stiffness modulus, fatigue behaviour, bearing capacities) that are defined as 
random variables are distributed continuously. They can assume any value into a defined 
and at least one-side limited interval. Due to the numerical algorithm the continuous 
random variables have to be transformed into discrete variables. This is conducted by the 
classification of the random variables. The model error resulting from the classification 
depends on the number and size of the chosen classes. The smaller the class size and the 
larger the class number, the lower the resulting model error. 

 
Figure 2 - Schematic illustration of transformation from a continuous into a discret random 

variable. 
 
Concerning the classification of continuous random and state variables, laws have not 
been considered as a matter of principle. This means that class size and class number can 
be selected arbitrarily and the size of every defined class can be determined variably. The 
class number including the size of every class will be defines depending on their influence 
to the results of the design process – this is a result-oriented classification. State variables 
that have a minor impact on the results of the design process can be discretised using 
fewer and wider classes. Even if small variation of state variables have large result 
variation the class size and class numbers have to be discretised as small and as many as 
possible. 

 

 
 
Figure 3 - Schematic illustration of classification of a continuous random variable using 

different class numbers but constant size of every class (upper figure) as soon as different 
class numbers and variable size of every class (lower figure). 

 

random variable X: x ∈ ℝrandom variable X: x ∈ ℝ

random variable X: x ∈ {x1,x2,8xn}random variable X: x ∈ {x1,x2,8xn}

random variable X: x ∈ {x1,x2,8xm} with m < nrandom variable X: x ∈ {x1,x2,8xm} with m < n

random variable X: x ∈ {x1,x2,8xn}random variable X: x ∈ {x1,x2,8xn}

random variable X: x ∈ {x1,x2,8xn}random variable X: x ∈ {x1,x2,8xn}
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Figure 4 - Schematic representation of the result-oriented classification. 

 
The value set Ξ of the continuous random variable X will be transformed into a set Ξ of 
discret random variables xi by the classification process.  
 

Nk,Rxmit}ki1|x{}Rx|X{ ii ∈∈≤≤=∈=Ξ         (4) 

         
Discret random variables have discrete distribution functions and everey value has a 
probability. The probability for the accidental occurrence, that X is into the intervall  xi until 
xi+1, can be calculated by integration of the theoretical probability density function using for 
the stochastical modelling of the random variable from the integration limits xi to xi+1. 
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3.1.2. Stochastic independency 

Stochastic independency is a special probabilistic concept. This means that random 
events do not influence each other. If the probability of the random variable X for any open 
interval is independent of the values y of the random variable Y, than both random 
variables are stochastic independently. In this case the probability of the simultaneous 
occurrence of two events is defined by: 
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For all random variables that will be considered in the probabilistically pavement design 
process the stochastic independency will be a priori defined. Contrary evidence are not 
available.  
 
3.2. Principle of procedure  

The difference between object constant and object variable random variables were 
explained in the previous chapter. The object variable random variables include only the 
material properties as soon as the thicknesses of pavement structure. These are classified 
into characteristics and comparison parameters.  
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The characteristics includes all material properties and thicknesses that are necessary to 
calculate stresses and strains into the pavement structure directly (thicknesses of 
pavement layers and thickness of full-depth asphalt pavement respectively, stiffness 
modulus of used asphalt, bearing capacity of unbound materials). However, the 
comparison parameters (fatigue behaviours) will be exclusively needed for proofs. 
 
Figure 5 shows the principle of the probabilistically pavement design procedure 
schematically. The procedure consists of 6 different modules that are described briefly 
below.  
 

 
Figure 5 - Schematic representation of the probabilitically pavement desing procedure. 

 

3.2.1. Module 1: Load variables - realisations and there combinations 

The load variables include the traffic loading considered by axle loads as well as the 
temperature conditions represented by temperature profiles in combination with surface 
temperatures. A set of finite states of load variables per load variables (set of special 
values) will be obtained classifying all axle loads and surface temperatures whatsoever.  
 

}ki1|v{V Vi ≤≤=             (7) 

}kj1|t{T Tj ≤≤=             (8) 

 
Where T, V = set of all load variables (temperature conditions and axle loads); ti, vj = 
special value of the load variable (special axle load and special temperature condition); kV, 
kT = number of values = number of classes (axle load classes and temperature classes). 
 
Every realisation of the load variables describes a class interval: 
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The axle loads as well as the temperature condition are random variables and their 
individual probability can be assigned by: 
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Both load variables are independently in terms of stochastic. The probability of common 
occurrence of a special value of axle loads vi and a special value of the temperature 
conditions tj can be calculated by the product of both single probabilities. 
 

)b(P)t(P)v(P)t,v(P ajiji =⋅=           (11) 

 
The set of all combined load variables B resulting from the sets of load variables V and T 
and can be determined by the Cartesian product. 
  

TVBBajiji kkkmit}ka1|b{}Tt,Vv|)t,v{(TVB ⋅=≤≤=∈∈=×=      (12) 

 
Where B = set of combined load variables; ba = special value of the combined load 
variables; kB = number of values = number of combined classes. 
 
3.2.2. Module 2: characteristics - realisations and there combinations 

The stiffness of asphalt, the thickness of full-depth asphalt pavement and the bearing 
capacities of unbound material among other things are necessary for calculating stresses 
and strains in the pavement structure. For these characteristics only one realization (the 
average value and the minimum respectively) has been considered in the previous semi-
probabilistic pavement design process. In a purely probabilistic process these 
characteristics have to be described and used as random variables. For the set of 
classified characteristics (= set of all special values), it is: 
  

}kl1|d{D Dl ≤≤=             (13) 

}ku1|e{E Eu ≤≤=             (14) 

}kg1|f{F Fg ≤≤=             (15) 

 
Where D, E, F = set of characteristics (thickness of full-depth asphalt pavement, stiffness 
module, bearing capacity); dl, eu, fg = special values of the characteristics; kD, kE, kF = 
number of values = number of classes. 
 
Every realisation of the characteristics describes a class interval equivalent to the load 
variables: 
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With the probability density functions that are assigned to continuous realisations of 
characteristics the probability of every discrete realisation can be calculated. The three 
characteristics that are exemplary described in this article can be defined as stochastically 
independency.  
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The probability of common occurrence of special realizations of the thickness of full-depth 
asphalt pavement dl, the stiffness module eu as well as the bearing capacity fg can be 
calculated by the product of all three single probabilities. 
 

)f(P)e(P)d(P)r(P)f,e,d(P gulhgul ⋅⋅==          (16) 

 
The set of all combined realisations of the characteristics R can be estimated by the 
Cartesian product again. 
 

FEDRRhgulgul kkkkmit}kh1|r{}Ff,Ee,Dd|)f,e,d{(FEDR ⋅⋅=≤≤=∈∈∈=××=   (17) 

  
Where R = set of combined characteristics; rh = special value of the combined 
characteristics; kR = number of values = number of combined classes. 
 
3.2.3. Module 3: stress and strain conditions 

According to the previous semi-probabilistic design process stresses and strains will be 
calculated for all realisations of combined load variables ba in the purely probabilistic 
design process again. The proofs must be conducted for one special realisation of 
combined characteristics (average and minimum values respectively) using the semi-
probabilistic design process. However stresses and strains have to be calculated for all 
realisations of combined characteristics rh using the purely probabilistic design process. An 
especially realisations of stresses and strains conditions βz results from an especially 
realisations of combined load variables ba as well as especially realisations of combined 
characteristics rh. The set of stresses and strains conditions Ḃ can be calculated by the 
product of B (set of combined load variables) and R (set of combined characteristics):  
  

FEDTVRBzhaBz kkkkkkkkand)r,b(with}kz1|{RBB ⋅⋅⋅⋅=⋅=β=β≤≤β=×= Β&
&             (18) 

 
Where Ḃ = set of stresses and strains conditions; βz = special realisation of stresses and 
strains conditions; kḂ = number of realisations = number of classes. 
 
3.2.4. Module 4: comparison parameters  

The comparison parameters are necessary for the proofs. They describe the allowed load 
cycles concerning the realisations of the stress and strain conditions. In the course of the 
probability pavement design process the comparison parameters have to be assigned as 
random variables. The set of classified / discrete comparison parameters is defined by:  
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Where N = set of comparison parameters; no = special value of comparison parameters; 
kN = number of realisations = number of classes. 
 
And for the associated probability for occurrence applies: 
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3.2.5. Module 5: damage hypothesis, total and partly damage  

From each special value of stress and strain conditions βz a partly damage sp is following 
and can be calculated using the comparison parameters no. As previously mentioned 
comparison parameters describes the allowed load cycles referring at a defined strain 
condition βz. The partly damage is defined by the quotient of number of load cycles applied 
at a value of the combined load variables ba and the allowed load cycles at the strains 
condition βz resulting from ba and rh. The allowed number of load cycles depends on the 
kind of proof (see also chapter 2). The partly damages will be calculated for every 
realisations of combined load variables ba according to the RDO Asphalt 09 [1]. 
Furthermore the partly damages have to be calculated for all realisations of the combined 
characteristics rh and all realisation of comparison parameters no using the probabilistic 
pavement design process. For every realisation applies: 
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Where N = load cycles during the service life; Ṅ = load cycles applied the especially 
realisation of the combined load variables ba. 
 
The total damage of the pavement will be calculated by the sum of all partly damages over 
all combined load variables ba according to Miner’s Law. 
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The total damages have to be calculated for all combinations of characteristics and 
comparison parameters. These combinations results using the Cartesian product: 
  

NRMMc kkkmit}kc1|m{NRM ⋅=≤≤=×=         (23) 

 
Where M = set of combined characteristics and comparison parameters; mc = especially 
realisation of combined characteristics and comparison parameters; kM = number of 
realisations = number of classes. 
 
The set of combined characteristics and comparison parameters M in matrix notation: 
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The corresponding probabilities and total damages can also be represented in matrix 
notation. 
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3.2.6. Module 6: Probability of failure  

All proofs that are carried out in the course of the design process for asphalt pavements 
using Miner’s Law [5]. According this law, if the sum of the partly damages over all 
combined load variables ba greater than 1, than the proof is not provided. The total 
damage will be calculated as a sum of all combined load variables ba (object constant 
random variables). Furthermore, the total damage have to be also calculated for each 
combination of characteristics and comparison parameters (object variable random 
variables) using the probability design process. Hence, a value of total damage, that is 
either greater than 1 (proof is not provided) or smaller and equal than 1 respectively (proof 
is provided), will be calculated for every realisation of combined characteristics and 
comparison parameters. The set of all total damages S have to be describes using a 
indicator I{S(mc)} for calculating the probability of default. 
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Following, the product of the probability P(mc) (equation 25) and the associated indicator 
I{S(mc)} will be calculated for every realisation of combined characteristics and comparison 
parameters and added up over all these realisations. The result is the probability of default 
PD. 
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⋅Ι=            (29) 
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4. MODEL CALCULATION 

The probabilistic pavement design process shall be exemplified by the following model 
calculation. In this example, the asphalt stiffness modulus, the allowed load cycles (load 
cycles until macro-cracking) as well as the thicknesses of the full-depth asphalt pavement 
have been handled as random variables. The calculations were carried out with the 
calibration asphalts according to the RDO Asphalt 09 [1]. The variability of the calibration 
asphalts will be described by normal distribution using fictive distribution parameters.  
 
The scatters of the stiffness modulus can be described advantageously using the relation 
of stiffness modulus. For large undershooting probabilities the stiffness modulus can be 
negative depending on the standard deviation when the dispersion of the stiffness 
modulus about the estimated value (results of laboratory tests) will be described by the 
difference between measured and estimated value of the regression model. With E ∈ ℝ+, 
the distribution functions have to be cut for all negative stiffness modulus E < 0. Therefore 
it is appropriate using the relation of stiffness instead of their difference. 
 

E

E
E

µ
= ξ

ξ
&             (30) 

 
Where Ėξ = special value of relation of stiffness modulus [N/mm²] (with Ėξ ∈ [0,1]); Eξ = 
stiffness modulus – result of laboratory test [N/mm²] (with Eξ ∈ ℝ

+); µE = expectancy of 
stiffness module [N/mm²] (with µE ∈ ℝ

+). 
 
The fatigue function of an asphalt describes the correlation between the initial elastic 
strains and the load cycles until macro-cracking. In the following the random variable „load 
cycles until macro-cracking“ will be designated with N as well as their special / random 
value with Nξ.  The describtion of the variability of the load cycles until macro-cracking 
should be carried out with the logarithmised fatigue function advantageously. 
  

clnbln N +ε⋅=µ ξ            (31) 

Nln-NlnNln µ=∆ ξξ           (32) 

 
Where lnµN = logarithmised expectancy of load cycles until macro-cracking [-] (with 
µN ∈ ℝ

+); b, c = material parameters [-]; lnεξ = special value of the logarithmised initial 
elastic strain (with εξ ∈ ℝ

+) [-]; lnNξ = special value of logarithmised load cycles until 
macro-cracking (with Nξ ∈ ℝ

+) [-]; ∆lnNξ = difference of logarithmised load cycles until 
macro-cracking [-]. 
 
The special values ∆lnNξ of the random variable „difference of logarithmised load cycles 
until macro-cracking” ∆lnN can be stochastically modeled with a normal distribution. 
 
Both the thicknesses of the particular construction layers and the thicknesses of the full-
depth asphalt pavement as well as the thicknesses of the pavement structure are indicated 
by variations. The difference of thicknesses ∆H (the thicknesses of individual layers as 
well as the thicknesses of full-depth asphalt pavement) can be approximated with a normal 
distribution [6]. That is the result from extensive statistical evaluations of thickness 
measurements on asphalt pavements (measurements of thicknesses of individual layers 
and measurements of thicknesses of full-depth asphalt pavement). The variability of 
thicknesses of full-depth asphalt pavement has been taken into account for the model 
calculation.  
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HHH µ−=∆ ξξ             (33)
 

 
Where ∆Hξ = special value of the difference of thickness of full-depth asphalt pavement 
[mm]; Hξ = special value of thickness of full-depth asphalt pavement [mm]; µH = estimate 
expectancy of thickness of full-depth asphalt pavement [mm]. 
 
The continuous probability density functions can be determined depending on the 
estimated expectancy and standard deviation for the relations of stiffness modulus, the 
differences of logarithmised load cycles until macro-cracking as well as the differences of 
thicknesses of full-depth asphalt pavement. The continuous probability density functions 
have to be discretised when the probabilistic pavement design process will be used. The 
discretisation can be carried out with integration of the continuous probability density 
function over defined integration limits. The continuous probability density functions of all 
three random variables have been discretised with nine classes per random variable 
(Table 1). 
 

Table 1 – Reference values of every classes per random variable. 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 
Ė 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 
ln∆N -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 
∆H -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 
 
The standard deviations of the random variables have been defined with σĖ=0.075, 
σln∆N=0.75 and σ∆H=0.75. Figure 6 (left diagram) shows the discretise probability density 
function resulting from these assumptions. 
  

 
Figure 6 - Discretise probability density functions; left: with σĖ=0.075, σln∆N=0.75 and 

σH=0.75; right: depending standard deviations (classes of standard deviations see table 3). 
 
The sum of all load cycles during a service life of 30 years have been defined with N = 
150,000,000 load cycles. This corresponds to an average daily traffic volume of 3,260 
vehicles. The axle load distribution (classes of axle loads and their probability of 
occurrence) have been used for this model calculation correspond to the axle load 
distribution for long distance traffic according to RDO Asphalt 09 [1]. The characteristic 
temperature profiles defined by Kayser [7, 8] have been used for the model calculation 
deviated from the RDO Asphalt 09 [1]. Thus, 204 temperature profiles could be considered. 
The pavement structure have been defined so that the sum of partly damage (total 
damage) is 1 (S=1) using the following special value of comparison parameters and 
characteristics. 
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-2.0}=H{0.0}=lnN{1.0}=E{ ∆∩∆∩&   
 
That is the reference configuration for the following examinations. 

 
Table 2 - Pavement structure with informations to the layers, the thickness of layers and 

material parameters of layers. 
structure layer thickness of layer material parameters 
asphalt surface layer 4 cm expectancy of stiffness modulus 

according to RDO Asphalt 09 
(stiffness-temperature-function of 
asphalt surface layer, asphalt binder 
course and asphalt base course) 
Poisson's ratio = 0.35 

asphalt binder course 8 cm 

asphalt base course 22 cm 

frost blanket course 56 cm modulus of deformation = 120 N/mm² 
Poisson's ratio = 0.5 

Formation ∞ modulus of deformation = 45 N/mm² 
Poisson's ratio = 0.5 

 
Figure 7 shows the total damages S (damage sum) depending on Ė und ∆lnN exemplary 
for ∆Hξ=-2 (left diagram) and ∆Hξ=0 (right diagram). The probability of failure is about 31 % 
referring to the reference configuration when a recalibration of the probabilistic design 
process will be disregarded. 
 

 
Figure 7 - Damage sum depending special values for the random variable Ė und ∆lnN; left: 

∆Hξ=-2.0; right: ∆Hξ=0.0. 
 
The variability of random variables will be characterised by their standard deviations. At 
unchanged boundary conditions, the probability of failure concerning the reference 
configuration will be also changed by modifying standard deviations. The standard 
deviations have been varied as follows in this example to using the probabilistic design 
process (Table 3).  
 
Table 3 – Reference values of every classes standard deviations per random variable. 

 σ1 σ2 σ3 σ4 σ5 
Ė 0.025 0.050 0.075 0.100 0.125 
ln∆N 0.250 0.500 0.750 1.000 1.250 
∆H 0.250 0.500 0.750 1.000 1.250 
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The allocated discrete probability densities are presented in figure 6 (right diagram). Figure 
8 shows the probabilities of failure for different variabilities of random variables. The 
random variable ∆lnN (differences of logarithmised load cycles until macro-cracking) has 
the greatest influence on the probability of failure. The correlation between the standard 
deviations of the random variable ∆lnN and the probabilities of failure is R=0.947. The 
random variable ∆H (difference of thickness of full-depth asphalt pavement) has the lowest 
influence on the probability of failure with a correlation coefficient R=0.0026. 
 

 Figure 8 - Probabilities of failure depending special values for the standard deviations of 
the random variable ∆lnN and Ė with σ∆H=0.25 (left) as well as special values for the 
standard deviations of the random variable ∆lnN and ∆H with σĖ =0.025 (right). 

5. SUMMARY 

Asphalt pavements can be designed more economically and ecologically sustainable with 
the German guideline for the design process of asphalt pavements (RDO Asphalt 09) [1] in 
contrast to the German guideline for the standardisation of asphalt pavements (RStO 01) 
[9]. Thereby, the necessary thicknesses of structure layers results from corresponding 
stresses and strains into the structure. With this new guideline, the highway engineer has 
a tool to consider different parameters that influence the design process result and he can 
takes into account these parameters individually.  
 
The design process of asphalt pavements is a significant innovation compared to the 
empirical procedure according RStO 01 [9], because the mechanical parameters of 
asphalts and their individuality among other things will be considered. The scatters of 
these material parameters and thicknesses of structure layers respectively will be 
neglected presently. 
 
Asphalts with the same expected values concerning the corresponding relevant material 
parameters will be treated equally in the current design process. Pavements, that was built 
with these asphalts (asphalts with same expected values of their material parameters) can 
have different safety levels and hence also the probabilities of failure, when the scatters of 
the material parameters are unequal. A real judging comparison of this asphalts is not 
possible and only possible to a limited extent respectively. The same applies for the 
judging comparison of the pavement structure. 
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The variabilities of the relevant input parameters for the design process can be taken into 
account with the probabilistic design process for asphalt pavements that was described in 
this paper. The variabilities will be modeled by probability density functions and then they 
will be dicretised. The probabilistic design process for asphalt pavements enables the user 
to calculate the probability of failure of the pavement structure. It could be shown that the 
variablities of different input parameters have varying influences of the probability of failure. 
Now safety considerations can also be conducted with the probabilistic design process for 
asphalt pavements. Furthermore, different pavement structures and materials can be 
compared and assessed better.  
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