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ABSTRACT 

This paper focuses on the influence of bituminous surfacing on structural behavior of 
orthotropic steel deck bridges. Presented research work is part of national "Orthoplus" 
project, funded by French "Agence Nationale de la Recherche" (ANR). A detailed 
approach allows taking into account the role of bituminous courses within the global 
structure behavior. First, behavior of bituminous materials is studied. A linear viscoelastic 
analysis is proposed, using a rheological model previously developed at the "Département 
Génie-Civil et Bâtiment" (DGCB) of "Université de Lyon/Ecole Nationale des Travaux 
Publics de l'Etat" (ENTPE). This model is implemented in a finite element code, allowing 
for calculation of road structures and particularly, in our case, orthotropic steel deck bridge 
structures. In order to validate this development, in-situ measurements were performed on 
two orthotropic structures. Results presented in this paper were obtained from tests on one 
of them, specifically the Millau Viaduct (tallest and longest multiple-span cable-stayed 
bridge in the world). In addition, laboratory measurements were carried out, consisting in a 
five-point bending test. Experimental results and simulation outputs were finally compared. 
In the framework of ANR "Orthoplus" national research project (focusing on the evaluation 
of the interaction between road surfacing and metal structures of orthotropic bridges during 
design stage), ENTPE, in collaboration with EIFFAGE Travaux Publics, is developing a 
general 3D linear viscoelastic calculation tool for pavement design. This work, already 
awarded in 2008 with special "Charles Parey" prize by the French Committee of 
Permanent International Association of Road Congresses (PIARC) [1] for its theoretical 
developments, is here completed and validated through the performed challenging 
experimental campaign, in particular the real-size investigation on the Millau Viaduct. 

1. CONTEXT  

The study lies within the framework of one of the tasks of national research "Orthoplus" 
project, funded by ANR, involving EIFFAGE Travaux Publics, Arcadis, "Centre Technique 
Industriel de la Construction Métallique" (CTICM), Eiffel, ENTPE, "Laboratoire Central des 
Ponts et Chaussées" (LCPC) and "Service d’Etudes sur les Transports, les Routes et leurs 
Aménagements" (SETRA). The four-year project will end at the beginning of 2011. 
Moreover, this work is the subject of a PhD thesis in the frame of a "Convention 
Industrielle de Formation par la REcherche" (CIFRE) contract between EIFFAGE Travaux 
Publics, its student-employee, Simon Pouget (hosted by the ENTPE laboratory), and 
ENTPE. 
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2. TECHNICAL ISSUE 

When self-weight of a bridge is a key parameter for its design optimization (wide span, 
movable bridge), an orthotropic deck usually represents the best solution. Mechanical 
behavior of these structures is quite easy to understand, whereas fine modeling of their 
response is complex. They show high sensibility to fatigue phenomena due to their great 
flexibility. Because of mentioned modeling difficulties, distresses are usually avoided by 
adopting safe well-known construction practices. Obviously, such an approach leads to a 
non-optimized design, albeit satisfactory. 
 
Mechanical behavior of the pavement can be modeled, therefore its influence on global 
behavior of structure can be taken into account. Surfacing becomes an authentic element 
of the structure, which can be optimized. This implies a reconsideration of construction 
practices for non-standard cases. Design of an orthotropic deck could then include not 
only geometry of spans and girders and thickness of the deck plate, but also properties of 
surfacing material as well as its thickness. Thus, an entirely new conception of integrated 
design of the orthotropic deck-surfacing couple becomes more appropriate. It is the big 
innovation of the Orthoplus project. 
 
Moreover, it is necessary to finalize the set of tools (in terms of theory, procedure and 
specifications) allowing taking into account the coupling of deck and surfacing for the 
estimation of life duration of the metal structure and the pavement itself. Indeed, the latter 
aspect is generally poorly assessed. Premature resurfacing of a heavily trafficked 
infrastructure results in non-negligible cost and a discomfort for users (a recent example is 
the Cheviré bridge in the greater Nantes area). 

3. DBN MODEL GENERAL FORMULATION 

Di Benedetto-Neifar (DBN) model (Figure 1), describes the behavior of bituminous 
materials, experimentally observed on a wide range of load. This visco-elasto-plastic 
general law summarizes a Linear ViscoElastic (LVE) behavior in a small strain domain, a 
non-linear behavior for higher strain levels together and a viscoplastic flow. Temperature 
effect is well considered for both low and high strain levels [2, 3, 4, 5, 6, 7, 8, 9]. 
 

E0, ν0

η1(T) ηn(T)

EP1 EPn

linear isotropic dashpot

general elastoplastic body

 

Figure 1 – General DBN model schematic 

 
3.1. Asymptotic LVE formulation (generalized Kelvin-Voigt model) 

For small amplitude loads, behavior of bituminous materials is linear. The asymptotic 
formulation of DBN model (Figure 2), equivalent to a n-element generalized Kelvin-Voigt 
model, is then used. 
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Figure 2 – Asymptotic expression schematic, in the linear domain of DBN model 

 
3.2. Model calibration with Orthochape® mixture  

Calibration of linear DBN model was carried out by means of complex modulus tests 
(Figure 3); during such tests, axial tension/compression loads were applied and axial and 
radial displacements were measured, together with axial force. The device provides 
accurate measurements on a wide scale of displacements, allowing performing creep and 
permanent deformation tests [10, 11]. From this experiment, which is homogeneous in the 
central measuring area of the sample, complex modulus and complex Poisson's ratio (in 

terms of norms |E*| and |ν*| and phase angles φE and φν) can be obtained. 
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Figure 3 – Device used for complex modulus test 

 
Measurements were made at 9 different temperatures (from -30°C to 50°C), sweeping 7 
frequencies from 0.01Hz to 10Hz. Isothermal curves for complex modulus and Poisson’s 

ratio norms (|E*| and |ν*|) are plotted in Figure 4 for Orthochape® mixture, which covers 
the Millau Viaduct deck. Time-Temperature Superposition Principle (PSTT) [12, 13] allows 
plotting a unique curve, considering a reference temperature Tref, chosen equal to 10°C, by 
horizontally shifting each isothermal curve along the frequency axis, using a shift factor aT 

(equal for both |E*| and |ν*|). Obtained master curves can be used in a design process. 
 
Then, DBN model can be calibrated in the small strain domain (Figure 2). Calibration of 

constants (Ei, νi, ηi) is achieved through an optimization procedure in the frequency 
domain using the three-dimensional formalism of 2S2P1D model (2 Springs, 2 Parabolic 
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elements and 1 Dashpot) [5, 8, 11]. Corresponding simulations are plotted in Figure 4. 
Model simulations accurately fit experimental results. 
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Figure 4 – Experimental results (test Orthochape4), master curves, DBN model (20 
elements) (Figure 2) plotted at a reference temperature of 10°C. 

(a) Complex modulus norm |E*| ; (b) Poisson’s ratio norm |ν*| 

4. COMSOL SOFTWARE 

Presented finite element calculations were carried out using Comsol software. The linear 
viscoelastic law, used to describe bituminous mix behavior in the small strain domain, was 
implemented. The software then becomes a very useful tool for pavement conception and 
design. 
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5. CASE STUDIES 

5.1. Five-point bending laboratory test [14] 

Finite Element Method (FEM) calculations were run on the geometry of the five-point 
bending fatigue test. After introducing general calculation parameters, obtained results for 
points A and C (Figure 5) are presented for the different considered configurations: 
Orthochape® mixture, associated with Parafor Pont® sealing sheet (Siplast group), and BSI 
Ceracem® High-Performance Fiber-Reinforced Cement Concrete (HPFRCC). 
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Figure 5 – Geometry, boundary conditions and meshing of a 5-point bending test 
specimen. (a) Orthochape® mixture; (b) BSI Ceracem® HPFRCC 

 

5.1.1 Geometry 

Two different designs were studied: 

• Specimens with bituminous mix surfacing: 
- 12mm-thick steel plate; 
- 3mm-thick Parafor Pont® sealing sheet, which ensure bonding and 

waterproofing between surfacing and steel plate; 
- 65mm-thick Orthochape® mix. 

• Specimens with HPFRCC surfacing: 
- 10mm-thick steel plate; 
- 35mm-thick BSI Ceracem® HPFRCC. 

 
Perfect bond is assumed between layers. 
 

5.1.2 Boundary conditions 

The central support of the orthotropic structure is a full-moment connection. Other 
supports are simple, allowing for horizontal movement. P is a 4 Hz sinusoidal compressive 
load, varying between 0,067 MPa and 0,67 MPa [16]. 
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5.1.3 Material behavior 

Isotropic LVE (ILVE) behavior is assumed for the two bituminous materials (asphalt 
mixture + sealing sheet) [1, 10, 11, 15, 17, 18, 19, 20, 21]. Correct simulation is ensured 
by implementation of DBN model in the Comsol software. 
 
Isotropic Linear Elastic (ILE) behavior is assumed for HPFRCC (EHPFRCC = 65 GPa and 

νHPFRCC = 0,2) and steel (Esteel= 210 GPa and νsteel = 0,3). 
 

5.1.4 Results 

Figure 6 shows comparisons between stress-strain curves obtained considering a 
HPFRCC surfacing (ILE behavior) and a Orthochape® + Parafor Pont® surfacing (ILVE 
behavior). It presents results for point A on the surface of wearing course, aligned with the 
centerline of the supporting beam, where maximum tension stress are supposed to occur.  
At first, a significant difference between maximum stress levels achieved in the HPFRCC 
(around 7 MPa) and in the mixture (ranging from 0.5 MPa at 30°C and 3 MPa at -10°C) 
can be observed. Stress-strain curves within the mixture appear to be strongly dependant 
on temperature, as expected. Moreover, contrarily to HPRFCC case, which is always in 
tension, calculated stress in the bituminous surfacing oscillates between tension and 
compression after a certain number of loading/unloading cycles (depending on 
temperature). 
 
Comparison between calculations and experimental results at 30°C is proposed in Figure 
7 for bituminous materials surfacing described in Figure 5(a). Strain generated by average 
value of P sinusoidal compressive load, is plotted versus time at points A and C (Figure 5). 
It can be observed a rapid stabilization of strain in steel plate at point C. However, in 
bituminous mixture at point A, strain evolves from extension to contraction as previously 
observed in Figure 6. 
 
This example shows the importance of taking in to account viscous aspects of bituminous 
material behavior in the calculation of pavement structures. This is also valid in cases like 
the presented one, where bituminous surfacing is applied over metal bridge structures 
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Figure 6 – Stress-strain curves obtained at point A on top of surfacing at 3 temperatures    
-10°C, 10°C and 30°C from calculations on the five-point bending structure 
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Figure 7 – Calculated average strain εmoy xx versus time and comparison with experimental 
results at 30°C at points A and C (Figure 5) 

 
5.2. In-situ measurements: the Millau Viaduct 

The most impressive studied orthotropic structure during “Orthoplus” project is the Millau 
Viaduct (tallest and longest multiple-span cable-stayed bridge in the world). In this paper, 
in-situ experiments are described. Analysis of data was performed using Finite Element 
Method (FEM). Results are compared with experimental data, to show capabilities of the 
developed calculation tool [20, 21]. 
 

5.2.1 Experimental study 

Experiments consisted in loading the Millau Viaduct and measuring corresponding strains 
with a net of gauges. 
 
The objective was to load slow and emergency lanes. The whole bridge slow lane (South 

→ North direction) was secured using signposting during a half-day. Loading was applied 

by a truck and its trailer; for a total of 38.1 tons distributed on five axles (Figure 8). Each 
axle was precisely weighed and footprint of each tire was recorded. 
 
First, static tests were performed. The truck was precisely positioned on the bridge. 
Location of the most loaded axle (second one of the tractor truck, with two twin wheels) is 
indicated by dx and dy (Figure 9). This axle was located on two different dy longitudinal 
positions, initially over a crossbeam (dy=16.7m) and then equally distanced between two 
crossbeams (dy=14.6m). Nine different transversal positions dx were tested, so that one 
twin wheel of the axle was always located over stiffener n° 6, 7 or 8. 
 
Secondly, tests under wheel load were performed. The truck travelled a 40 m-long 
distance over the instrumented area at two constant speeds 10 and 50 km/h in order to 
underline viscous aspects of bituminous material behavior. Tests were carried out for 
different transversal positions dx. Positions were chosen as close as possible from the 
considered ones during static loading. 24 tests under wheel load were realized. 
 
Ambient temperature was between 12.1°C and 12.3°C. 
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(a) (b)
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(d)

 

Figure 8 – Pictures of the Millau Viaduct during tests. (a) Truck during axles weight; (b) 
View of the bridge; (c) Loading truck on the Millau Viaduct; (d) Stiffeners and crossbeams 

with gauges 
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Figure 9 - Geometry, mesh, load and vertical displacement field of the Millau Viaduct 
structure in the Finite Element Code 
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Two longitudinal locations were chosen to monitor strains in the steel deck, one between 
two crossbeams and the other one on a crossbeam (same as for static loading). Chain 
gauges were glued under the deck around stiffeners n° 6 and 7 (two per stiffener) to obtain 
information on the stress field around welding lines (Figure 10). Some bi-directional 
gauges are also glued below the deck between and under stiffeners n°5, 6, 7 and 8 
(Figure 10). Others gauges are used but not detailed here. 
 

Concerning static loads, transversal strain (εxx), measured under steel plate, between two 
crossbeams, are presented in Figure 10(a) for one longitudinal position (dy=14.6m) and 
one transversal position (dx=1.77m) of the truck. Each data point represents the average 

value of strain after stabilization. Example of measured longitudinal strain (εyy) under 
stiffener 7, between two crossbeams, during loading at 50km/h, transversally located at dx 
= 1.82 m, is also proposed in Figure 10(b). Data are compared with calculation results. 
 

5.2.2  Analysis with FEM calculations 

3D Finite Element calculations (FEM) are performed to simulate the experimental 
campaign on the Millau Viaduct. Due to complexity and size of the structure, some 
simplifications are necessary (Figure 9): 

• 6 similar elements are considered longitudinally. 

• slow and emergency lanes are modeled, for a total of 8 stiffeners. 

• crossbeams are completely supported on one extremity (near stiffener n°8) to 
represent actions of the rest of the bridge structure. 

• steel plate, sealing sheet and bituminous mix surfacing are modeled with 3D brick 
elements while crossbeams and stiffeners are modeled with 2D shell elements. 
Mesh is refined around stiffeners n° 6, 7 and 8, inducing 3.12 millions degrees of 
freedom. 

• wheel loads are modeled by rectangular loaded surfaces. 

• ILE behavior is assumed for steel (Esteel= 210 GPa and νsteel = 0,3). ILVE behavior is 
assumed for the two bituminous materials (asphalt mixture + sealing sheet). Correct 
simulation is ensured by implementation of DBN model in the Comsol software. 

 
Some simulation results are presented in Figure 10. Discontinuities appear in the curve, 
due to the presence of stiffeners and the way they are modeled with 2D shell elements. 
Comparisons with experimental data show reasonable agreement, taking into account 
errors in locating truck and gauges. 

6. OUTLOOKS 

In the framework of ANR Orthoplus national research project (focusing on the evaluation of 
the interaction between road surfacing and metal structures of orthotropic bridges during 
design stage), ENTPE, in collaboration with EIFFAGE Travaux Publics, is developing a 
general 3D linear viscoelastic calculation tool for pavement design. 
 
DBN model has already been implemented in a FEM calculation software for pavement 
design, particularly for bridge surfacing application and in general for every structure 
including materials characterized by a viscous behavior. This tool is already in use by 
ENTPE and EIFFAGE, but is aimed at a wider diffusion, also for French and international 
communities in the road business. 
 
More work is still needed to finalize this method, especially introducing 3D general DBN 
model, taking into account fatigue, rutting, etcU 
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Figure 10 - Comparison between measured strains and FEM strain calculations. 

(a) static load test - εxx for dx = 1.77 m and dy = 14.6 m 

(b) wheel load test - εyy under stiffener 7 in the middle of two crossbeams for dx = 1.82 m 
at 50km/h 
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