FINDING RELATIONSHIPS BETWEEN COMMODITY FLOW AND LAND USE

T. G. Jin, M. Saito, & J. Nelson Department of Civil & Environmental Engineering, Brigham Young University, USA <u>tqjin2004@hotmail.com</u>, <u>msaito@byu.edu</u>, & jimn@byu.edu D. L. Eggett Center for Statistical Consultation and Collaborative Research Brigham Young University, USA <u>theeqg@byu.edu</u>

ABSTRACT

The importance of commodity flow has significantly increased with the growth of economic activities; and traffic congestion, environmental pollution, and inadequate freight facilities produced by the growth of commodity flow have affected entire social systems, including transportation systems. Commodity produced from, attracted to, and distributed within a traffic analysis zone is affected by multiple contributing factors, such as land use, location, time, social condition, economic condition, and political condition. Of these factors, land use is considered to be one of the most important factors affecting the level of commodity flow. Transportation planners' and engineers' ability to predict commodity flow using land use data can help them quickly make rough estimates of future commodity flow and prepare for future transportation facility needs. Lack of comprehensive commodity flow and land use data has hindered this effort. However, these data are becoming available to the public via the Internet. This study took advantage of this data availability to evaluate relationships between commodity flow and land use, and found that there were strong relationships between commodity flow and land use. Based on the findings of correlation analysis, multiple regression models for estimating commodity flow using land use data were developed by stepwise regression for the state of Utah.

1. INTRODUCTION

Commodity flow has increased dramatically in the United States in the past decade. Because of this, the increase in truck traffic moving those commodities over US highways has created problems and challenges for transportation planning and traffic operation. These problems include traffic congestion, deficient transportation systems, insufficient truck parking spaces, increased traffic crashes involving trucks, deteriorating transportation infrastructure, environmental pollutions, and lower quality of life near truck routes.

Freight demand modeling requires a significant amount of data because it involves a comprehensive analysis of the relationships among economic activities, production and attraction trends by industry, distribution or linkages between production and attraction nodes, mode choice, shipment size decisions, vehicle trips, and route assignments. Dimensions that influence freight demand modeling (i.e., weight, volume, transport mode, and volume of freight traffic) have given rise to two major modeling platforms: commodity-based modeling and trip-based modeling [1].

It is widely accepted that fundamental economic mechanisms for specific regions drive freight movements, which are largely determined by attributes of land use for each analysis zone. In other words, how a region uses its land largely determines what commodities are shipped into, out of, or distributed within that region. Consequently, land use models for the transportation planning process are essential in understanding and predicting the location of current and future economic activities [2].

To better understand the characteristics of commodity flow in Utah, a study was conducted to determine the relationship between commodity flow and land use. Data about commodity flow in specific regions are now publicly available, to a certain extent, from organizations such as the Commodity Flow Survey (CFS) by the U.S. Census Bureau and the Bureau of Transportation Statistics [3], the Freight Analysis Framework (FAF) [4], Utah GIS portal data [5], and city and county data available from the Utah Governor's Office website [6].

This paper presents the results of an in-depth analysis of these databases and demonstrates that there are strong correlations between commodity flow and land use. Hence, when funds are limited for building sophisticated models for commodity flow just like the ones mentioned in the literature review, rough estimates of commodity flows can be made by using publicly available freight-related data. Although this paper uses Utah's data, the concept presented here should apply to any part of the world as long as commodity flow and land use data are available.

2. LITERATURE REVIEW

Corsi et al. [7] discussed key differences between passenger and freight transportation, including unit of measures, value of time, cost of loading and unloading, types of vehicle, and number of decision makers. Freight movement from an origin to a destination is determined by a number of key locations defined by where certain activities related to commodity flow take place, including production and attraction sites, warehouses, other intermediate distribution centers, and storage facilities. Also, freight movement is affected by the measurements of transported freight (volume, weight, transport mode, and volume of the items being transported) and by the decision makers about the items being transported (shippers, receivers, and carriers). In other words, the variables that determine how freight moves through the transport systems are complicated and intermingled with each other [8].

Ortuzer and Willumsen [9] studied the key factors affecting freight movements in the United Kingdom (UK) in 2002. They focused on location factors (resources, production, and intermediate and final market); physical factors (characteristics of new materials and products that influence the way they are transported); operational factors (the size of the firm, its distribution policy, and its geographical dispersion); dynamic factors (seasonal variations in demand and changes in customers' tastes); and pricing factors (changes in price of product including technology and political policy).

In the same year, Iding et al. [10] suggested examples of freight trip generation indicators by land use type in Germany through a large-scale postal and telephone survey. They surveyed types of core business (type of activity), site, floor area, and number of employees; the type of industrial site on which the firm is located; the average number of trucks per day bringing in and taking out freight (per type of vehicle); and other logistic characteristics like transport mode, transport distances of trucks, dispersion of trucks over time (day and week), loading units, and organization of transport. This study, however, did not include the evaluation of relationships between commodity flow and land use.

Even though several studies, including the Southern California Association of Government (SCAG)'s model and the Travel and Land Use Model Integration Program (TLUMIP) in the IP0322-Jin,Saito, Nelson, Eggett-E 2

state of Oregon, have forecasted freight traffic demand using land use, these models did not use the direct relationship between commodity flow and land use. As a regional inputoutput (I-O) model, the SCAG's model used trip rates for each of eight different land use types using socioeconomic data inputs (households and employment by industry sector). Trip rates were calculated for each of three different truck gross-vehicle-weight classes [11]. TLUMIP used bi-level hybrid simulation methods that follow the changes of land use according to urban growth and forecast truck traffic according to travel demand by land use [12]. TLUMIP could be a land use model that interfaces with an existing travel demand model, or an integrated urban model that combines land development and travel models.

The existing models have resulted from the efforts of many researchers and practitioners, involving complex models and sophisticated procedures. These models, however, often require expert consultants to run. Given the availability of data on land use for a particular year and the commodity flow for that year, there can be a way for transportation planners and engineers to make rough estimates of commodity flow directly from land use data. With this simple question in mind, this study was conducted to evaluate the relationship between commodity flow and land use using a geographic information system in transportation (GIS-T) and statistical analysis tools.

3. METHODOLOGY

This section presents the data collection, reduction, and analysis procedures followed in this study. The analysis focuses on data that are publicly available via the Internet. The level of data availability is the key to completing the analysis.

3.1. Data collection and transformation

Data for this research were collected from government websites, including the CFS [3], the FAF [4], the Utah GIS Portal [5], and the official website for the state of Utah [6]. County Business Pattern (CBP) data for year 2002 were drawn from the FAF website [4]. The CFS website provided commodity flow survey results, including shipment characteristics by mode of transportation for origin state in the year 2002. The Utah GIS Portal had geographic map files and a geodata database organized by county. Utah population estimates for year 2002 and the profiles of social and economic characteristics of Utah were obtained from Utah's official state website. All raw data went through logarithmic transformation (natural log) in order to normalize the data distribution. In this study, counties were used as the traffic analysis zones because counties were the smallest areas that could be used for the analysis, due to the extent of available data. Statewide commodity flow totals produced from (production), attracted to (attraction), and distributed within Utah (within) by two-digit Standard Industrial Classification (SIC) code were allocated to each county using the proportion of the county total employment to the state total employment because CFS data are state-level summaries. Previous research studies found that employment data were closely related to the amount of commodity flow generated [10, 11].

This study analyzed relationships between commodity flow and land use, together with relationships between commodity flow and contributing economic factors, and the correlation between land use and business pattern factors for the subsequent analyses. However, this paper reports only the relationships established between commodity flow and land use.

3.2. Classification of data by industry code

The next step for organizing the data was to classify each type of commodity by industry code. Commodities produced in Utah and sent to other states (production), imported to Utah from other states (attraction), and transported to other counties within Utah (within) were classified into 44 industries by the SIC code. Commodity flow data obtained from the CFS website were classified into the 2002 Production Commodity from Utah (CFS2P) values, the 2002 Attraction Commodity to Utah (CFS2A) values, and the 2002 Commodity Flow within Utah (CFS2I) values. Table 1 lists the variable names used in the study that correspond to the classified commodity types.

	Detailed Industries	Draduation	Attraction	\\/ithim
SIC	Detailed industries	CESSO	Allraction	
Code	(nec = not elsewinere classified)			
04	All Commodilies (Code T was used for analysis)	CF52P1	CF52AT	CF5211
01		CFS2P1	CFSZAT	CFS2I1
02	Cereal grains	CFS2P2	CFS2A2	CFS2I2
03	Other agricultural products	CFS2P3	CFS2A3	CFS2I3
04	Animal feed and products of animal origin, nec	CFS2P4	CFS2A4	CFS2I4
05	Meat, fish, seafood, and their preparations	CFS2P5	CFS2A5	CFS2I5
06	Milled grain products and preparations, and bakery	CFS2P6	CFS2A6	CFS2I6
	products			
07	Other prepared foodstuffs and fats and oils	CFS2P7	CFS2A7	CFS2I7
08	Alcoholic beverages	CFS2P8	CFS2A8	CFS2I8
09	Tobacco products	CFS2P9	CFS2A9	CFS2I9
10	Monumental or building stone	CFS2P10	CFS2A10	CFS2I10
11	Natural sands	CFS2P11	CFS2A11	CFS2I11
12	Gravel and crushed stone	CFS2P12	CFS2A12	CFS2I12
13	Nonmetallic minerals, nec	CFS2P13	CFS2A13	CFS2I13
14	Metallic ores and concentrates	CFS2P14	CFS2A14	CFS2I14
15	Coal	CFS2P15	CFS2A15	CFS2I15
17	Gasoline and aviation turbine fuel	CFS2P17	CFS2A17	CFS2I17
18	Fuel oils	CFS2P18	CFS2A18	CFS2I18
19	Coal and petroleum products, nec	CFS2P19	CFS2A19	CFS2I19
20	Basic chemicals	CFS2P20	CFS2A20	CFS2I20
21	Pharmaceutical products	CFS2P21	CFS2A21	CFS2I21
22	Fertilizers	CFS2P22	CFS2A22	CFS2I22
23	Chemical products and preparations, nec	CFS2P23	CFS2A23	CFS2I23
24	Plastics and rubber	CFS2P24	CFS2A24	CFS2I24
25	Logs and other wood in the rough	CFS2P25	CFS2A25	CFS2I25
26	Wood products	CES2P26	CES2A26	CES2I26
27	Pulp newsprint paper and paperboard	CES2P27	CES2A27	CES2I27
28	Paper or paperboard articles	CES2P28	CES2A28	CES2128
20	Printed products	CFS2P29	CES2429	CES2120
30	Textiles leather and articles of textiles or leather	CES2P30	CES2A30	CES2130
31	Nonmetallic mineral products	CES2D31	CES2A31	CES2 31
32	Rase motal in primary or comi finished forms and in	CES2D22	CES2A32	CES2131
52	finished basic shapes	01 021 02	01 32432	01 02102
33	Articles of base metal	CES2P33	CES2A33	CES2I33
34	Machinery	CES2P34	CES2A34	CES2I34
35	Electronic and other electrical equipment and components	CES2P35	CES2A35	CES2135
00	and office equipment	01 021 00	01 02/00	01 02100
36	Motorized and other vehicles (including parts)	CFS2P36	CFS2A36	CFS2I36
37	Transportation equipment, nec	CFS2P37	CFS2A37	CFS2I37
38	Precision instruments and apparatus	CFS2P38	CFS2A38	CFS2I38
39	Furniture, mattresses and mattress supports. lamps.	CFS2P39	CFS2A39	CFS2I39
	lighting fittings			
40	Miscellaneous manufactured products	CES2P40	CES2A40	CES2I40

Table 1	- Commodity	v classifications	by two-diai	it SIC code	e for CFS2002
10.010 1	o o i i i i o di i c	,	<i>y</i>		

41	Waste and scrap	CFS2P41	CFS2A41	CFS2I41
43	Mixed freight	CFS2P43	CFS2A43	CFS2I43
	Commodity unknown	CFS2P99	CFS2A99	CFS2199

3.3. Analysis process

The process shown in Figure 1 was followed in order to analyze the relationship between commodity flow and land use using SPSS [13] and TransCAD [14]. Data collected for the analyses were sorted and reduced using a Microsoft Excel spreadsheet, and analyzed and modelled using SPSS and TransCAD.

Figure 1 - Analysis process

4. ANALYSIS RESULTS

Results of analyses using SPSS [13] and TransCAD [14] are presented in this section, including the results of Pearson correlation analysis between commodity flow and land use, GIS maps showing relationships between commodity flow and land use, and multiple regression models with commodity flow as the dependent variable (in thousand tons) and land use types (in acres) as independent variables. The analyses show that there are good correlations between commodity flow and land use.

4.1. Correlation between commodity flow and land use

Correlation analysis between commodity flow and land use was performed to see if there is a close relationship between commodity flow and land use. There are six land use types: irrigation area (IR), non-irrigation area (NI), residential area (RES), riparian (RIP), urban area (URB), and water area (Water) in the Utah GIS Portal data set [5]. Table 2 shows the Pearson correlation values between total commodity flow and land use. It was found that residential land use (RES) had the closest correlation with commodity flow, with a Pearson correlation value of about 0.91. Land use with the second highest Pearson correlation value was urban land use (URB), with a Pearson correlation value of about 0.91. Land use with the second highest Pearson correlation value was urban land use (URB), with a Pearson correlation value of about 0.86. Non-irrigation and riparian areas had much less correlation with commodity flow. Their relationships were significant at the 95 percent confidence level ($\alpha = 0.05$).

		CFS2PT	CFS2AT	CFS2IT
IR	Pearson Correlation	0.205	0.207	0.205
	Significance (2-tailed)	0.286	0.282	0.286
	N	29	29	29
NI	Pearson Correlation	0.498	0.501	0.498
	Significance (2-tailed)	0.006	0.006	0.006
	Ν	29	29	29
RES	Pearson Correlation	0.914	0.914	0.914
	Significance (2-tailed)	0.000	0.000	0.000
	Ν	29	29	29
RIP	Pearson Correlation	0.474	0.465	0.474
	Significance (2-tailed)	0.009	0.011	0.009
	Ν	29	29	29
URB	Pearson Correlation	0.860	0.857	0.860
	Significance (2-tailed)	0.000	0.000	0.000
	Ν	29	29	29
WATER	Pearson Correlation	-0.069	-0.059	-0.069
	Significance (2-tailed)	0.724	0.763	0.724
	N	29	29	29

	• • •			~			
Lable 2 -	Correlations	hetween	commodity	/ tlow/	and	land	LISE
	001101010110	0000000	commodity	11011	ana	iu iu	400

(Unit: Commodity flow in thousand tons; Land use in acres)

4.2. Geographic analysis

All data related to the contributing factors can be placed on the Utah map by using the geographic analysis functions of TransCAD, such as merging, making bands, overlaying, and showing areas of influence. Also, analysis and presentation functions of various theme maps of TransCAD such as color pattern, dot-density, pie and bar chart, and scaled-symbol themes, enable the user to perform multiple geographical map analyses [14]. Figure 2 demonstrates the results of correlation analysis among commodity flow and land use type.

Figure 2 shows a color and pattern theme map with pie-charts describing the relationship between commodity flow and land use type. The larger the size of urban area, the higher the commodity flow. Therefore, the area size of urban land use is a good variable for estimating the amount of commodity flow. As shown in Figure 2, most of the commodity flows produced from, attracted to, and distributed within Utah are concentrated in three urban areas in Utah: the Wasatch Front (Salt Lake County, Utah County, and Davis County), northern Utah (Weber County and Cache County), and southern Utah (Washington County).

Figure 2 - Map of total CFS and URB by county

4.3. Multiple linear regression analysis

Based on the findings from the correlation analysis, potential variables that would be included in multiple linear regression models were identified by stepwise regression analysis. Multiple regression models were developed for each commodity type to estimate the level of commodity flow per county for production of, attraction to, and within Utah commodity flow using the two-digit SIC code. The general model used for the analysis is shown below, where *i* is the commodity type number and *j* is the land use type number (see Table 2). CFS2P in the model means year 2002 commodity flow for production. For attraction and within commodity flow, P in CFS2P is replaced by A and I, respectively.

$$[\ln(CFS2P]_t) = Constant_t + \sum_{j=1}^{6} a_{tj} \ln(Land \, Use \, Type_j)$$

Equation (1)

Figure 3 shows an example of the results of stepwise regression analysis on SIC 34 (machinery) for attraction; three best models are shown in the figure. As shown in the figure, R^2 values were found to be quite high (0.831 to 0.925 in this example), indicating a strong relationship between commodity flow and land use type.

Regression (CESTA34)

Model Summarv

Model	R	RSquare	Adjusted R Square	Std. Error of the Estimate			
1	0.91157	0.83096	0.82470	0.70427			
2	0.93070	0.86621	0.85592	0.63850			
3	0.96178	0.92502	0.91602	0.48745			

a Predictors: (Constant), RES_T

b Predictors: (Constant), RES_T, URB_T

c Predictors: (Constant), RES_T, URB_T, RIP_T

ANOVA(d)

1	Vlodel	Sum of Squares	df Mean Square		F	Sig.	
	Regression	65.83277	1	65.83277	132.72876	0.00000	
1	Residual	13.39186	27	0.49599			
	Total	79.22462	28				
	Regression	68.62503	2	34.31252	84.16604	0.00000	
2	Residual	10.59959	26	0.40768			
	Total	79.22462	28				
	Regression	73.28448	3	24.42816	102.80955	0.00000	
3	Residual	5.94015	25	0.23761			
	Total	79.22462	28				

a Predictors: (Constant), RES_T

b Predictors: (Constant), RES_T, URB_T

c Predictors: (Constant), RES_T, URB_T, RIP_T

d Dependent Variable: CFSTA34

Coefficients(a)

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		Ŭ
1	(Constant)	-10.60019	1.05320		-10.06475	0.00000
T	RES_T	1.33348	0.11575	0.91157	11.52080	0.00000
	(Constant)	-10.73237	0.95617		-11.22429	0.00000
2	RES_T	1.05189	0.15029	0.71908	6.99892	0.00000
	URB_T	0.33056	0.12631	0.26888	2.61710	0.01458
	(Constant)	-11.04590	0.73340		-15.06123	0.00000
2	RES_T	1.23772	0.12217	0.84611	10.13097	0.00000
3	URB_T	0.48014	0.10217	0.39056	4.69936	0.00008
	RIP_T	-0.30185	0.06816	-0.33450	-4.42831	0.00016

a Dependent Variable: CFSTA34

Figure 3 - Commodity flow-attraction for commodity item 34 (CFSTA34)

Ramsey and Schafer [15] state that the model selection can be based directly on the key statistical parameter values, including use of the number of explanatory variables to model the response accurately, without the loss of precision that occurs when essentially redundant and unnecessary terms are included. Even though the R^2 of each model was automatically calculated as the SPSS statistical summary, the R^2 cannot be used as is because it is not adequate for making a sensible selection of the cases presented. As a method of selecting the best regression model, Schwarz's Bayesian Information Criterion (BIC) was used. The smaller the value of BIC a model has, the better the model is [15].

Through the stepwise multiple regression, each commodity flow type (production from, attraction to, and distributed within Utah) by two-digit SIC code was analyzed. Models with the best fit, as evaluated by BIC, were chosen for each commodity type. Table 3 through Table 5 show selected multiple regression models with land use type for CFS-Attraction, CFS-Production, and CFS-Within Utah by two-digit SIC code. Even though the models between commodity flow and land use type cannot be validated with real data due to the lack of future land use data at the time of this study, the models suggest that there is a strong relationship between commodity flow and land use. In these tables, constants are all near zero, indicating that there is no commodity flow when predictor values are zero.

5. CONCLUSION

Levels of commodity flow produced from, attracted to, and distributed within Utah are a function of location, physical attributes, operation, and pricing. Land use is a governing factor that can be used for estimating the level of commodity flow. Better prediction of land use will enable transportation planners to more quickly estimate commodity flow and plan for the development of future transportation facilities. Now that commodity flow data, land use data, and other data necessary for this type of analysis are available via the Internet, it is possible to study the relationship between commodity flow and land use.

Understanding the relationship between commodity flow and land use is a fundamental step for estimating the level of commodity flow. This study found that the land use types most closely related to the level of commodity flow were urban and residential land use types. The Pearson correlation values of these two land use types for the three commodity flow types were high, as shown in Table 2. Geographical map analysis functions of TransCAD were also used in the study to clearly illustrate the relationship between levels of commodity flow and land use, as shown in Figure 2.

Multiple linear regression models were then developed by stepwise regression analysis to find relationships between commodity flow and land use using the two-digit SIC code. When future land use plans become available, commodity flow produced from, attracted to, and distributed within Utah can be predicted by macroscopic regression models because the models developed in this study are quite reliable, with high R^2 values, as shown by sample models in Figure 3.

This paper discussed a procedure for finding relationships between commodity flow and land use specifically for the state of Utah. Although this paper uses Utah's data, the concept presented here should apply to any part of the world as long as core data of commodity flow and land use become available. The next recommended steps are to study relationships between commodity flow and economic factors relevant to land use, such as number of jobs, employment data, and wages data, and to develop multiple regression models to estimate commodity flow using economic factors.

Item Code	Constant	RES	URB	RIP	NI
CFSTPT	0.0038190325	3.3700	1.6170	0.7432	
CFSTP3	0.0000800101	2.9161			
CFSTP4	0.0000026377	4.3172			1.1156
CFSTP5	0.0000019376	4.3171			1.1156
CFSTP6	0.0000400626	3.5137	1.6226	0.7299	
CFSTP7	0.0000661411	3.5272	1.6231	0.7286	
CFSTP8	0.0000048204	3.6764	1.6287	0.7156	
CFSTP12	0.0001648088	2.9842	1.8642	0.7015	
CFSTP13	0.0001681593	3.4329	1.6195	0.7373	
CFSTP15	0.0006585555	3.5948	1.6257	0.7226	
CFSTP17	0.0002522777	3.5530	1.6241	0.7263	
CFSTP18	0.0001264083	4.5880			
CFSTP19	0.0002029898	3.2926			
CFSTP21	0.000006530	4.3171			1.1156
CFSTP22	0.0000029770	4.3171			1.1156
CFSTP23	0.0000195904	3.7160	1.6302	0.7123	
CFSTP24	0.0000529435	3.2995			
CFSTP25	0.000003737	4.3172			1.1156
CFSTP26	0.0000364609	3.5758	1.6250	0.7243	
CFSTP27	0.0000033302	3.3863	1.6176	0.7417	
CFSTP28	0.0000184642	3.3057	1.6144	0.7495	
CFSTP29	0.0000217639	3.3653			
CFSTP30	0.0000014188	4.3181	1.6507	0.6672	
CFSTP31	0.0000776226	4.3172			1.1156
CFSTP32	0.0004442777	3.4695			
CFSTP33	0.0000043250	4.3172			1.1156
CFSTP34	0.0000177194	3.1800	1.6092	0.7622	
CFSTP35	0.0000036229	3.9239	1.6376	0.6956	
CFSTP36	0.0000017570	4.3172			1.1156
CFSTP37	0.000000172	4.3172			1.1156
CFSTP38	0.000002019	4.3172			1.1156
CFSTP39	0.0000317855	3.1372			
CFSTP40	0.0000304324	2.9842	1.8642	0.7015	
CFSTP42	0.0000089661	4.3171			1.1156
CFSTP43	0.0003515399	3.3549			

Table 3 – Coefficients of best multiple linear regression models with land use types for CFS-Production

Item Code	Constant	RES	URB	RIP	NI
CFSTAT	0.003727068	3.2212	1.6072	0.7616	
CFSTA2	0.000006597	4.3172			1.1156
CFSTA3	0.000024078	3.2927	1.6101	0.7544	
CFSTA4	0.000002943	4.3172			1.1156
CFSTA5	0.000021021	3.2025	1.6064	0.7636	
CFSTA6	0.000024856	3.5976	1.6220	0.7259	
CFSTA7	0.000136632	3.2330	1.6076	0.7604	
CFSTA8	0.000011096	3.4768	1.6174	0.7368	
CFSTA11	0.000012136	2.9433	1.8555	0.7096	
CFSTA12	0.001406241	3.0402			
CFSTA13	0.000021974	3.9989	1.6364	0.6932	
CFSTA14	0.000086220	3.1923			
CFSTA15	0.000689348	3.4205	1.6152	0.7420	
CFSTA17	0.000263673	3.4181	1.6151	0.7422	
CFSTA18	0.000166701	4.2942			
CFSTA19	0.000202669	3.4839			
CFSTA20	0.000004640	4.3172			1.1156
CFSTA21	0.000002527	4.6053			
CFSTA22	0.000001310	4.3172			1.1156
CFSTA23	0.000017020	3.5556	1.6205	0.7296	
CFSTA24	0.000118237	3.3664			
CFSTA26	0.000072943	3.3150	1.6110	0.7522	
CFSTA27	0.000031592	3.1548	1.6044	0.7686	
CFSTA28	0.000042201	3.4857			
CFSTA29	0.000025818	3.4770			
CFSTA30	0.000010629	3.4073	1.6147	0.7433	
CFSTA31	0.002273012	2.9671			
CFSTA32	0.000127399	3.0987	1.6020	0.7746	
CFSTA33	0.000035883	3.2849	1.6098	0.7552	
CFSTA34	0.000015952	3.4478	1.6164	0.7394	
CFSTA35	0.000011177	3.0573	1.6002	0.7792	
CFSTA36	0.000020751	3.3626	1.6129	0.7475	
CFSTA37	0.00000095	4.3172			1.1156
CFSTA39	0.000014201	3.4055			
CFSTA40	0.000031446	3.2167	1.6070	0.7621	
CFSTA43	0.000149715	3.0237	1.5987	0.7829	
CFSTA99	0.000006269	2.9433	1.8555	0.7096	

TABLE 4 - Coefficients of best multiple linear regression models with land use types for CFS-Attraction

Item Code	Constant	RES	URB	RIP	NI
CFSTIT	0.00273395	3.2328	1.6076	0.7605	
CFSTI2	0.0000048	4.3171			1.1156
CFSTI3	0.00006267	2.876			
CFSTI4	0.00000118	4.3172			1.1156
CFSTI5	0.0000070	4.3171			1.1156
CFSTI6	0.00001614	3.3465	1.6123	0.7491	
CFSTI7	0.00003867	3.5615	1.6207	0.7291	
CFSTI8	0.00000509	3.6162	1.6227	0.7243	
CFSTI12	0.00016109	2.9433	1.8555	0.7097	
CFSTI13	0.00004124	2.9433	1.8555	0.7096	
CFSTI14	0.00001392	2.9433	1.8555	0.7096	
CFSTI15	0.00054814	3.4531	1.6165	0.7389	
CFSTI17	0.00024517	3.4283	1.6155	0.7413	
CFSTI18	0.00012282	4.4113			
CFSTI19	0.00017090	3.2594			
CFSTI20	0.00000210	4.3171			1.1156
CFSTI21	0.00000192	4.4076			
CFSTI22	0.00000042	4.3171			1.1156
CFSTI23	0.0000056	4.3172			1.1156
CFSTI24	0.00000135	4.3171			1.1156
CFSTI25	0.0000037	4.3172			1.1156
CFSTI26	0.00003767	3.2322	1.6076	0.7605	
CFSTI27	0.00000354	3.2163	1.6069	0.7621	
CFSTI28	0.00002348	3.3731			
CFSTI29	0.00000293	2.9433	1.8555	0.7096	
CFSTI30	0.0000005	4.3172			1.1156
CFSTI31	0.00211310	2.8753			
CFSTI32	0.00009562	3.0480	1.5998	0.7801	
CFSTI33	0.00003244	3.4639			
CFSTI34	0.00001103	3.1616	1.6047	0.7676	
CFSTI35	0.0000832	3.1130			
CFSTI36	0.0000026	4.3172			1.1156
CFSTI38	0.0000003	4.3172			1.1156
CFSTI39	0.0000020	4.3172			1.1156
CFSTI40	0.00001359	3.0725	1.6008	0.7775	
CFSTI41	0.00000847	4.3172			1.1156
CFSTI43	0.00022255	3.3139			

TABLE 5 - Coefficients of best multiple linear regression model with land use types for CFS-Within

ACKNOWLEDGMENTS

This research was made possible by the funds provided by the Fulton College of Engineering and Technology of Brigham Young University. IP0322-Jin,Saito, Nelson, Eggett-E 13

REFERENCES

- 1. Ogden, K. W. (1992). "Urban goods movement: a guide to policy and planning." Ashgate Publishing Limited, Aldershot, Hampshire, United Kingdom.
- 2. Palem, S. (2004). Design and implementation of an internet-based spatial decision support system (SDSS) for freight management. MS Thesis, University of Toledo, OH.
- 3. U.S. Census Bureau & Bureau of Transportation Statistics. CFS website. http://www.census.gov/econ /www/ se0700.html. Accessed Oct. 15, 2009.
- 4. Federal Highway Administration (FHWA). FAF website. http://ops.fhwa.dot.gov/ freight/freight_analysis/faf/. Accessed Oct. 12, 2009.
- 5. Utah Geographic Information Council. Utah GIS Portal website. http://gis.utah.gov. Accessed Sept. 12, 2009.
- 6. State of Utah. The official website for the state of Utah. http://www.utah.gov/government/ governor.html. Accessed Sept. 16, 2009.
- 7. Čorsi, T. M. & Grimm, C. M. (1997). A guidebook for forecasting freight transportation demand. *NCHRP Report,* no. 388, Transportation Research Board, Washington, D.C., 1997.
- 8. Jiang, F., Johnson, P., and Calzada, C. (1999). Freight demand characteristics and mode choice: an analysis of the results of modeling with disaggregate revealed preference data. *J. Transportation and Statistics*, *2*(*2*), pp 149–158.
- 9. Ortuzar, J. de D. & Willumsen, L. G. (2002). *Modeling transport*, 3rd ed. John Wiley and Sons, New York.
- 10. Iding M. H. E., Neesterm W. J., & Tavasszy, L. A. (2002). Freight trip generation by firms. Presented at 42nd European congress of the regional science association, Dortmund, Germany.
- Fisher, M., Ang-Olson, J., & La, A. (2000). External urban truck trips based on commodity flow. In Transportation Research Record: *J. of the Transportation Research Board*, no. 1707, Transportation Research Board of the National Academies, Washington, D.C., pp 73–80.
- 12. Donnelly, R. (2002). Development of the TLUMIP commercial travel (CT) component. Working paper prepared by Parsons Brinckerhoff for the Oregon Department of Transportation. http://www.odot.state.or.us/tddtpau/modeling.html. Accessed Nov. 18, 2009.
- 13. SPSS Inc. Version 1.0 ©2004. Chicago, IL.
- 14. TransCAD. Version 5.0 ©1994–2010. Caliper Corporation, Newton, MA.
- 15. Ramsey, F. L. & Schafer, D. W. (2002). *The statistical sleuth: a course in methods of data analysis, 2nd ed.* Duxbury, Pacific Grove, CA.