

XXIVth World Road Congress Mexico 2011 Mexico City 2011.

RECYCLING MATERIALS FROM ROAD PAVEMENTS

The Austrian Approach to Recycling of Concrete Pavements

Stefan MARCHTRENKER Johannes STEIGENBERGER

Association of the Austrian Cement Industry

Research Institute

marchtrenker@voezfi.at

Overview

- The need for recycling
- General requirements
- The Austrian situation
- Recycling concrete pavements in Austria (> 20 years experience)
- EU-project DIRECT_MAT
- Conclusion


Advantages

- Conservation of natural resources
- Limitation of landfills
- Reduction of transportation distance
- Homogeneous material with proved behaviour over years

Example

Choice 1

$\sim 700.000 \text{ m}^3$

> 200% concrete for Burj Khalifa

Choice 2

$\sim 700.000 \text{ m}^3$

Landfilling ³/₄ volume of Teotihuacan pyramid

General requirements

General requirements for recycling technique

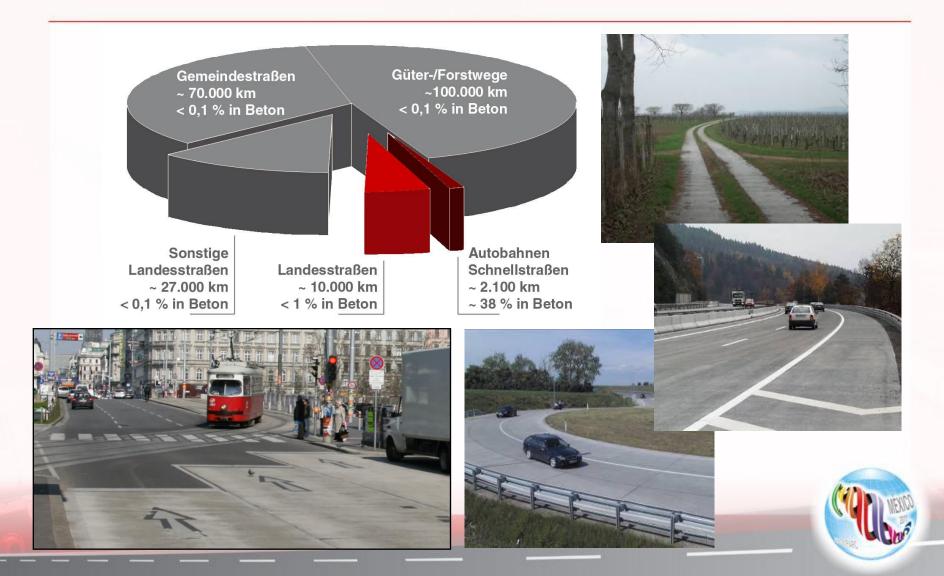
- Wide spectrum of application
- Maximum recycling quote of old concrete
- Avoidance of « downcycling »
- No reduction of quality compared to natural resources
- Conformity with national rules and standards

General requirements

RVS 08.17.02 (also available in English: www.fsv.at)

Required aggregate sizes	GK22 or GK32, 3 fractions, of which one has a maximum aggregate size of 4 mm, the others with a minimum aggregate size of 4 mm 1)
Aggregate maximum density	given value ± 30 kg/m ³
Grading D > 4 mm	GC90/15 or GC85/20
Grading D ≤ 4 mm	GF85, category in accordance with table 2 in ÖNORM EN 12620
Aggregate form	SI40
Shell content	SC10
Fine aggregate content, coarse	f1.5
Fine aggregate content, fine	f10
Freeze-thaw resistance D > 4 mm	F1
Freeze-thaw resistance D ≤ 4 mm	F1 in accordance with ONR 23303, section 11.2
Acid-soluble sulphate	AS0.8
Alkali silica reaction in accordance with ÖNORM B 3100	Load class 3
Grading D = 22, D = 32	Range AC22, AC 32

1) The use of **recycled concrete material larger than 4 mm is permissible**. To this end, the recycled concrete:


- must be resistant to frost and de-icing chemicals,
- content of bituminous material (according to ÖNORM EN 933-11) < 20 %,
- be **tested for alkali silica reaction** in due time on material larger than 4 mm using the accelerated test 0/4 or accelerated test 0/4 and a long-time test,

- the material shall be **sieved, cleaned from dust, and any sealants and steel removed**, so the requirements of the above table are met.

The Austrian situation

Road network Austria

The Austrian situation

Exposed aggregate surface

- Strength
- Load distribution
- Wear resistance
- Stability against deformation
- Brightness
- Noise reduction
- Skid resistance

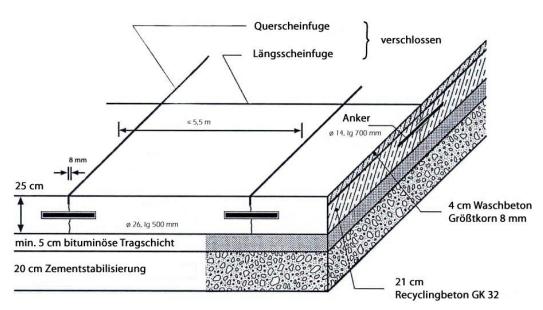
Recycling Concrete Pavements in Austria Demolition and Preparation

- Demolition
- → Analysing/testing
- \rightarrow Relaxation
- \rightarrow Breaking
- → Temporary storage
- Preparation
- \rightarrow Crushing
- \rightarrow Sorting
- → Washing
- → Temporary storage
- \rightarrow Mono-material storage

(up to 20 % bituminous content permissible, R&D: up to 50% possible)

Recycling Concrete Pavements in Austria

Two-lift concrete paving


• Top concrete layer = surface layer

Highest quality concrete with exposed aggregate concrete

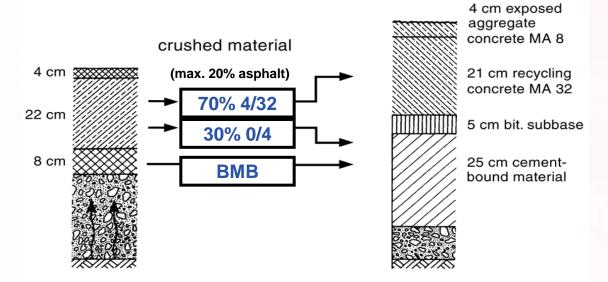
- → Skid-/wear resistance
- → Brightness
- \rightarrow Noise reduction
- → Evenness
- \rightarrow Stability against deformation
- Bottom concrete layer

Low-cost quality concrete with recycled aggregates \geq 4 mm

Casting fresh in fresh
Two-lift construction

Recycling Concrete Pavements in Austria

What about the fine aggregates?


• Difficulties with recycled aggregates $\leq 4 \text{ mm}$

old

High water absorption, edged shape → Difficult workability

Solution

Use for improvement of cement stabilisation

new

Recycling Concrete Pavements in Austria

Benefits

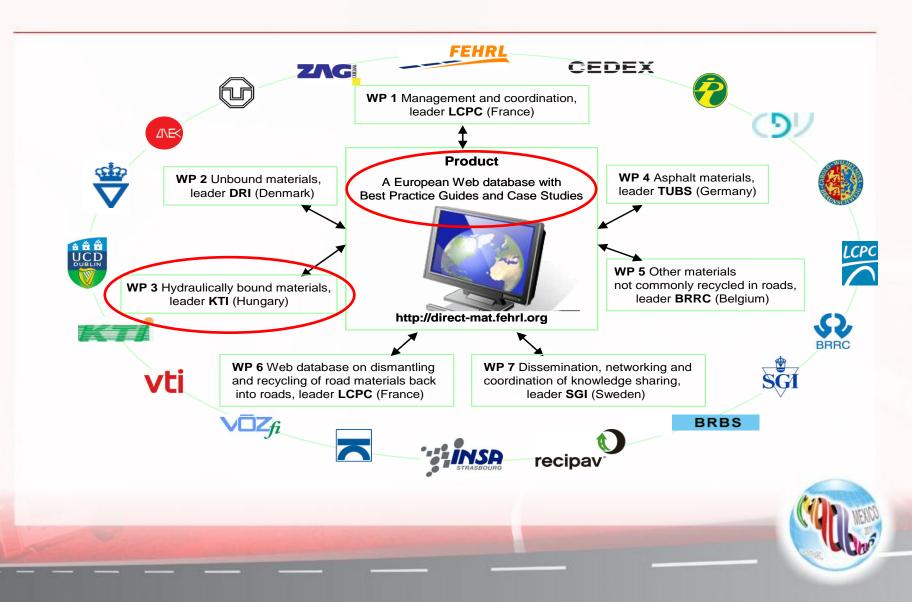
Technical

Optimal use of resources

- \rightarrow All the recycling aggregates can be recycled in new pavement
- \rightarrow Bond between cement matrix and recycled aggregate

Environment

- \rightarrow Saving of natural resources
- \rightarrow Reduction of emissions due to decrease of transport


Costs

- \rightarrow Optimisation of material use
- \rightarrow Reduction of costs for transportation
- \rightarrow Avoidance of landfilling costs

EU-project DIRECT_MAT

Overview

EU-project DIRECT_MAT

Outcome (WP3)

- Big differences in knowledge and use
- Some countries have good techniques
- Techniques experiences over years

Two-lift paving with recycled aggregates is a sustainable and promising technique in the next future → Need for dissemination of knowledge

> European seminar Brussels, 2011 October 18th Further information on http://direct-mat.fehrl.org/

Conclusions

Two-lift paving - a sustainable technique

Environment

Saving natural resources Avoidance of landfills Reduction of emissions

Economic

Optimised material use Reduction of transportation costs

Social

Surface properties

Reduction of emissions

[Wathne, 2010]

Thank you for your kind attention! Muchas Gracias por su atenciòn!

Stefan Marchtrenker Research Institute of the Association of the Austrian Cement Industry A-1030 Vienna, Reisnerstraße 53 www.zement.at <u>marchtrenker@voezfi.at</u>