

XXIVth World Road Congress Mexico 2011 Mexico City 2011.

IMPACT OF CLIMATE CHANGE ON ROAD PERFORMANCE

Laszlo GASPAR – Csaba KOREN

- Szechenyi University, Gyor, Hungary
- Professors

gaspar@kti.hu; koren@sze.hu

CONTENT

- 1. Background
- 2. Hungarian mitigation and adaptation strategies
- 3. Adaptation of road infrastructures to climate change
- 4. Case studies in Hungary
- 5. Concluding remarks

1. BACKGROUND

- Climate change \rightarrow challenge to national economy branches, including road engineering
- Climate model for Hungary with changes above average
- World-wide efforts to mitigation and/or adaptation, e.g. RIMAROCC: Risk Management for Roads in a Changing Climate (ERA-NET ROAD, 2010)

2. HUNGARIAN MITIGATION AND ADAPTATION STRATEGIES I.

Mitigation strategies and measures:

- carbon taxation (fuel tax),
- CO₂-emission trading,
- harmonisation of the policies for energy, climate change and sustainability,
- safer energy supply by motor fuel diversification,
- improvement of energy efficiency of vehicles (by 20% by 2020),
- reduction in greenhouse gas emission (by 20% by 2020)

2. HUNGARIAN MITIGATION AND ADAPTATION STRATEGIES II.

Adaptation measures:

- risk based approaches for investment decisions,
- inventory of critical roads vulnerable to the effects of climate change,
- integration of extreme weather information into public information systems,
- adaptation programmes for vehicle fleets and road infrastructures,
- integration of emergency planning into operation,
- renewal of aged vehicle fleets, introduction of new efficient technologies.

3. ADAPTATION OF ROAD INFRASTRUCTURES TO CLIMATE CHANGE I.

Dangerous climate change elements:

- extreme high air temperature,
- extreme low air temperature,
- extreme precipitation,
- extreme hydrological features,
- extreme wind storms.

3. ADAPTATION OF ROAD INFRASTRUCTURES TO CLIMATE CHANGE II.

Extreme high temperatures:

concrete pavements; asphalt pavements with harder bitumen type and/or lower binder content

Extreme low temperatures:

concrete pavements; avoiding frost-susceptible sub-grade; \rightarrow less harmful freeze-thaw cycles

Intensive rainfall:

hydraulically bound layers; effective drainage system; highlevel maintenance against slipperiness, rutting, potholing etc.

3. ADAPTATION OF ROAD INFRASTRUCTURES TO CLIMATE CHANGE III.

Snow and wind:

snow fences; plantation for snow and wind protection **Hot and dry periods:**

lower bitumen content in asphalt; warm (not hot) asphalt layers with quick opening of the road to traffic; protected (paved) slope surfaces

Unfavourable hydraulic conditions:

granular sub-grade; very effective drainage system **Severe wind-storms**:

monitoring, short-term stopping of construction and maintenance work; additional road safety measures

3. ADAPTATION OF ROAD INFRASTRUCTURES TO CLIMATE CHANGE IV.

Possible modification of specifications

- Assessment of Hungarian road related standards and technical specifications for the need of further development
- Identification of critical issues
- Proposal for the direction of changes to the criteria in broad terms.
- Committees for performing the required changes in standards (Medium-term adaptation measures to climate change).

4. CASE STUDIES IN HUNGARY I.

Motorway M1 in 2009

Extreme rainfall \rightarrow too much water to culvert under M1 \rightarrow erosion \rightarrow caving-in of pavement structure \rightarrow traffic closure for 4 days

4. CASE STUDIES IN HUNGARY II.

Motorway M6 in 2010

Extreme rainfall \rightarrow too much water into improperly compacted shoulder of M6 \rightarrow erosion of hard shoulder and slope \rightarrow traffic restriction for 1 week

4. CASE STUDIES IN HUNGARY III.

Calculation on the motorway network (1300 km)

Cost structure of road closures due to extreme climate events (Timár, 2011)

- Delays 35%
- Detours 45%
- Infrastructure costs 20%

11.5 % of accidents under extreme climate conditions Increase of accident costs

5. CONCLUDING REMARKS

- Climate change \rightarrow challenge to road sector
- Mitigation and adaptation strategies and measures, also in Hungary.

• Co-operation of all stakeholders is needed for the efficiency of efforts.

XXIVth World Road Congress Mexico 2011 Mexico City 2011.

THANK YOU FOR YOUR KIND ATTENTION !

Laszlo GASPAR – Csaba KOREN

Szechenyi University, Gyor, Hungary