

XXIVth World Road Congress Mexico 2011 Mexico City 2011.

Technical Solutions and Sustainable Policies for Material Recycling

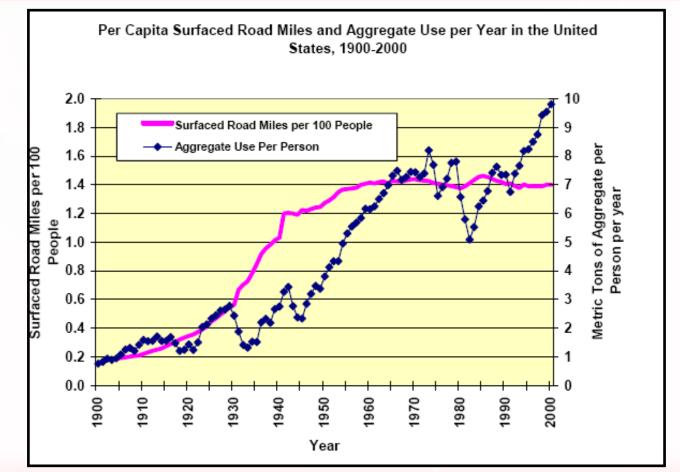
Suneel N. Vanikar, P.E.

- Federal Highway Adminstration
- Team Leader- Pavement Design and Analysis

Suneel.Vanikar@dot.gov

PRESENTATION OUTLINE

- Why Recycle?
- FHWA Policy
- FHWA Focus
- Current Initiatives

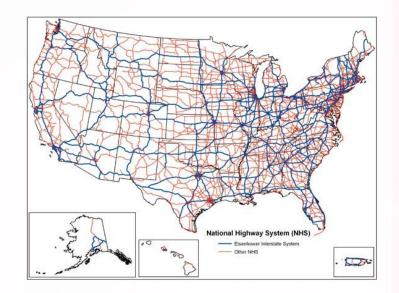


NEED TO RECYCLE

- Need to rehabilitate much of the infrastructure that was built in the 1950's and 1960's.
- Virgin materials are being depleted.
- The cost of virgin materials could increase in the future.
- Need to maximize materials resources.

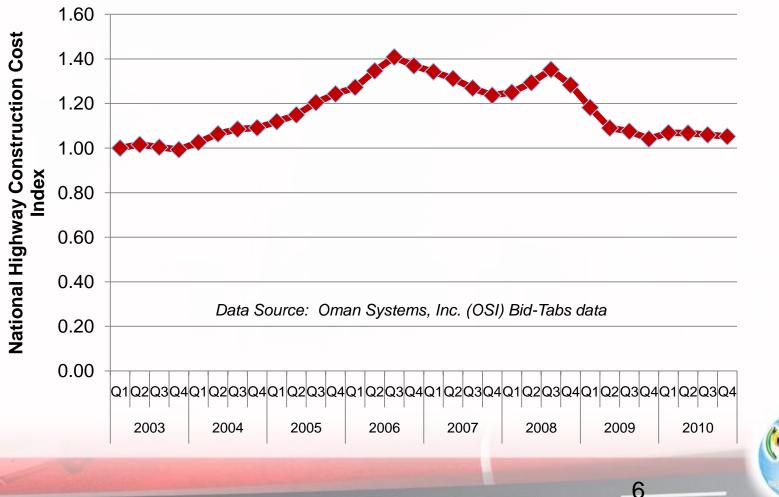
Advances in technology allow better process control.

DEMAND FOR AGGREGATES



USGS Report: "Sociocultural Dimensions of Supply and Demand for Natural Aggregates"

DEMAND FOR MATERIALS


- 160,000 mile National Highway System
- 4 million miles of public roads
- Produce over 600 million tons of HMA & 85+ million SY of concrete for paving annually

- \$70 billion capital outlay to maintain pavements
- Demand for aggregates considerable requiring an estimated 700+ million tons to meet annual demand (15%-25% of annual production)

CONSTRUCTION PRICE FLUCTUATIONS

Federal Highway Administration – Quarterly Cost Trends 2003-2010

FHWA POLICY - 2002

- Recycled/re-used materials are viable resources.
- Recycled materials should get 1st consideration.
- Consider use of recycled materials early in the planning/design process.
- Economic benefits should be considered in the material selection process.
- Restricting the use of materials should be technically based.
- Material should not adversely impact the environment and should perform as intended.

FHWA INITIATIVES

- Provide Program Policy/Guidance
- Provide Technical Guidance/Assistance
- Conduct & Support Research Efforts
- Advance Promising Technologies
- Assist in Field Trials
- Review & Promote Best Practices
- Support Highway Agencies
- Training and Technology Transfer

Recycled Materials Resource Center

- Created under TEA-21 legislation in Fiscal Year 1999.
- Continued under SAFETEA-LU legislation with FHWA, EPA, State, and Industry contributions.
- Developed several specifications for AASHTO consideration.
- 43 projects with a wide variety of products available online.

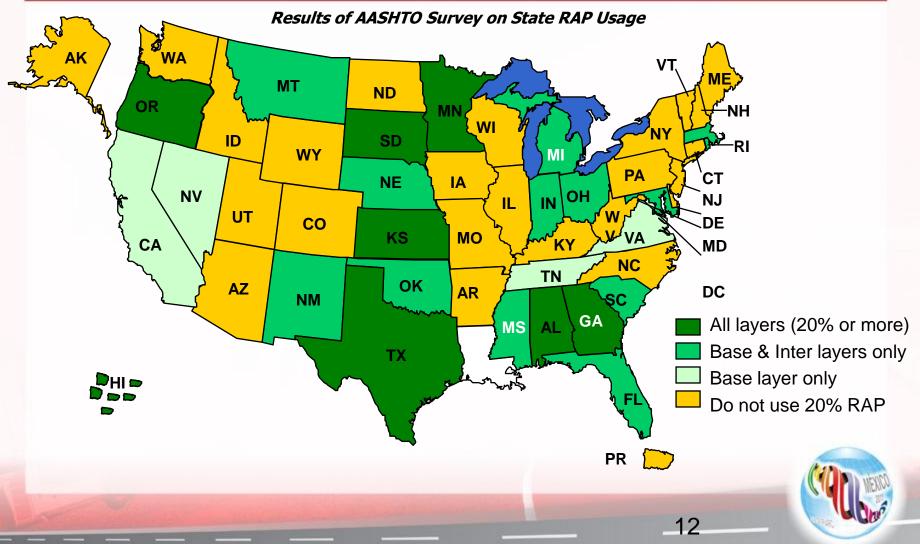
KEY EMPHASIS OF PROGRAM

Recycled Materials

- Reclaimed Asphalt Pavement
- Recycled Concrete as Aggregate
- Reclaimed Asphalt Shingles
- In-Place Recycling
- Warm Mix Asphalt
- Two-Lift Concrete Paving

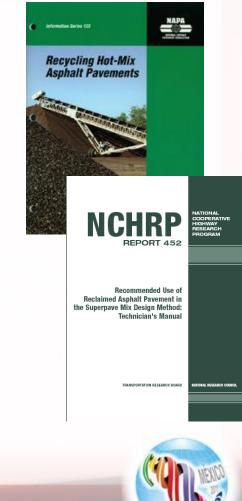
RECLAIMED ASPHALT PAVEMENTS (RAP)

Sources of RAP


- Milling
- Pavement removal
- Plant waste

Most Common Uses

- Addition to HMA
- Aggregate in cold-mix
- Granular base
- Fill or embankment material



STATES THAT USE MORE THAN 20% RAP IN HMA LAYERS

RAP GUIDANCE DOCUMENTS

- National Asphalt Pavement Association (NAPA) Publications
- Asphalt Institute's (AI) MS-2: Mix Design Methods for Asphalt
 - Section on using RAP
- Recommended Use of RAP in the Superpave Mix Design Method: Technician's Manual
 - National Cooperative Highway Research Program (NCHRP) Report 452
- Reclaimed Asphalt Pavement in Asphalt Mixtures: State of The Practice
 - http://www.fhwa.dot.gov/publications/research/ infrastructure/pavements/11021/index.cfm

RAP Expert Task Group (ETG)

- Composed of representatives from federal and state DOTs, private industry, and academia.
- Provides guidance and technical support.
- Targeting low RAP usage States.

RECLAIMED ASPHALT SHINGLES (RAS)

- Reclaimed Asphalt Shingles (RAS)
 - Crushed/ground and screened
 - Used in hot mix asphalt
 - High beneficial reuse
- 11 million tons of waste asphalt roofing shingles are generated in the US per year
 - Manufacturing Waste ~ 1 million
 - Roofing tear-offs ~ 10 million

USING RECLAIMED ASPHALT SHINGLES (RAS)

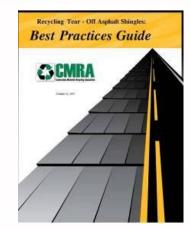
Benefits include

- Economic Savings
- Reduced landfill waste

Concerns

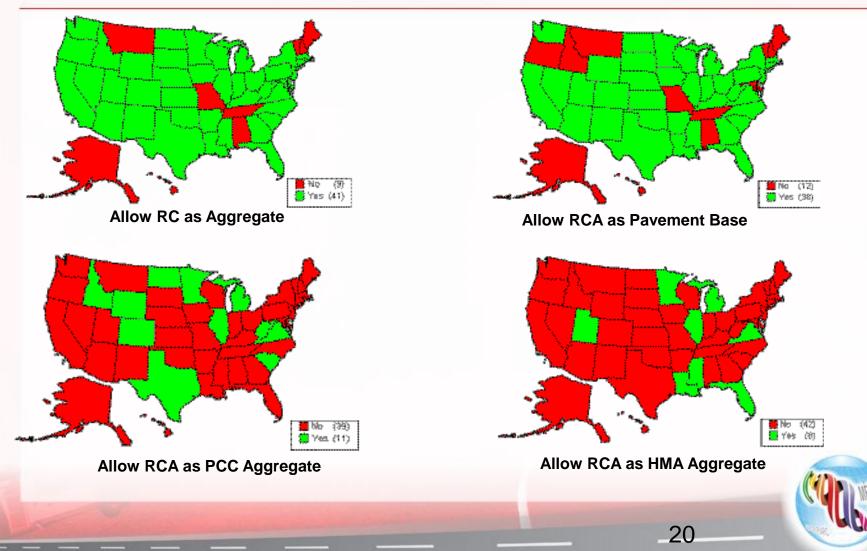
- Environmental concerns
- QC/QA during sourcing, processing, and use of shingles in HMA
- Use of tear-off shingles

GUIDANCE FOR USING RAS IN HMA


- AASHTO Specification MP15 Use of Reclaimed Asphalt Shingle as an Additive in HMA
- AASHTO Specification PP53 Design Considerations When Using Reclaimed Asphalt Shingles in New HMA

GUIDANCE FOR USING SHINGLES

- Best Practices for Recycling Asphalt Shingles from Construction Materials Recycling Association (CMRA)
 - Source and Sorting
 - Processing
 - End Uses
- Uses of Waste Asphalt Shingles in HMA: State-of-the-Practice (NAPA)
 - Sources
 - Mix Design Considerations
 - Equipment Modifications
 - Studies


RECYCLED CONCRETE AS AGGREGATE

FHWA Technical Advisory

- Use of Recycled Concrete as Aggregate
 - 5 State Review of Best Practices
- RMRC
 - Development of AASHTO Specifications
 - Recycled Aggregate Durability
 - PCC Pavement Recycling Machin...
 - RCA Concrete Pavement Outreach

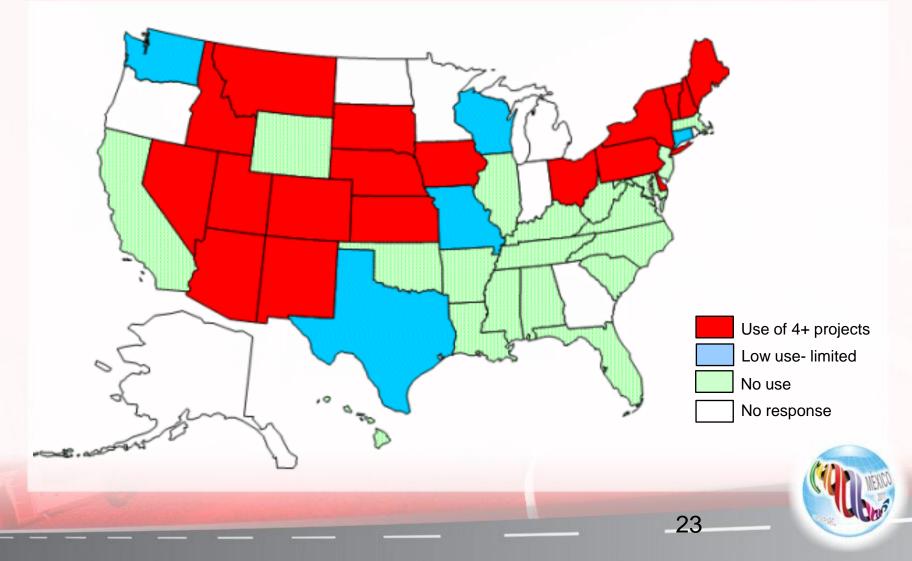
USE OF RCA IN HIGHWAYS

RCA AND 2-LIFT CONCRETE PAVING

- 2-Lift concrete pavement construction allows us to maximize the use of RCA in the pavement structure
- RCA can be used in the bottom lift because it will not be exposed to pavement surface wear
- Potential cost savings by using RCA in lower lift

FHWA TECHNICAL ADVISORY

Use of Recycled Concrete Pavement as Aggregate in Hydraulic-Cement Concrete Pavement


- Processing of reclaimed concrete pavement
- Recycled concrete aggregate quality requirements
- Concrete properties with recycled concrete aggregate
- Pavement design
- Mixture design
- Production issues
- Construction issues
- Cost Impacts

USE OF COLD-IN PLACE RECYCLING (CIR)

CIR – Barriers / Issues

- No nationally recognized mix design
- Acceptance testing protocols needed
- Requires specialized skills
- Perceived reluctance to use technology
- Curing times when emulsions are used
- Need to document long term performance
- Use of mineral fillers on performance
- More education and support

TOOLS

Federal Highway Administration, U.S. Department of Transportation Sustainable Highways Self-Evaluation Tool

- INVEST "Infrastructure Voluntary Self-Evaluation Tool"
- A web-based self evaluation tool for measuring sustainability over the life-cycle of a transportation project or program
- Consider sustainability for:
 - System and Project Planning
 - Design/Construction
 - Operations and Maintenance
- Includes credits for use of recycled and re-used materials

https://www.sustainablehighways.org/

QUESTIONS

26

More Information:

Suneel N. Vanikar, P.E. suneel.vanikar@dot.gov

www.fhwa.dot.gov/pavement/recycling www.rmrc.unh.edu www.greenhighways.org www.tfhrc.gov/hnr20/recycle/waste/index.htm

