

XXIVth World Road Congress Mexico 2011 Mexico City 2011.

SUSTAINABLE ROAD PAVEMENTS. ACCELERATED TESTS

Radu ANDREI

Technical University »Gh. Asachi » lasi

Professor of Civil Engineering

radu.andrei.d@gmail.com

Romania as a PIARC founder member is making significant efforts to integrate his transport infrastructure into the huge European road network.

Romanian significant efforts to integrate his transport infrastructure in the modern European road network

Rehabilitation and extension of existing road network

❑ Assimilation & implementation of new technologies and sustainable pavements

♣ Stone Matrix Asphalt – (SMA/MASF)

- □ Assimilation of new methods for structural design of pavements:
- **4** Romanian method PD 177/2001
- ♣ ME-PDG (USA)
- 4 APA (Long Lasting Flexible Pavement)

SUMMARY

- •. The particularities of pavement design. Evolution of pavement conception and design
- Addressing the robustness of road network and of pavement structures. Failure criteria
- The use of Accelerating Loading Test facilities for validation of the new design concepts
- Developing new design concepts for flexible and rigid pavements in Romania
- •Future research trends. SupeRoads

Significant milestones in the evolution of pavement conception and design. The six generations of pavements

- Primitive Roads
- Roman Roads
- McAdam's, Tresagues & Telford concepts
- Modern Roads
- Variable Road Pavements Structures –VRPS
- Durable Roads : LLRP & LLFP

The evolution of the design concepts Modern Roads

The evolution of the pavement design concepts Variable Road Pavements Structures –VRPS

Т.

The evolution of the pavement design concepts . The sixth generation : LLFP & LLRP

The unique feature of pavement design

Pavements, considered as a complementary invention of the wheel, are the only engineering structures, conceived and designed to fail after a specific period of time (design life);

Addressing the robustness of road networks and of pavement structures. Failure criteria

-observing the performance of existing pavements ; -relate with the observed failure (of an initial strain, occurring in a specific layer and in a critical place, under the repeated action of the traffic loads) ;

-derive design equations, used for computing the number of the ESAL cycles leading to the imminent failure

Failure criteria considered in the structural design. Flexible pavements

* fatigue cracking of the asphalt layer

* **rutting** which can initiate in any layer of the structure (vertical compressive strain ε_v initiated at the top of the subgrade layer.)

* spring seasonal deflection

Failure criteria considered in structural design. Rigid pavements

The main aspects/tasks which have to be addressed in an ideal mechanistic design procedures (according Huang, : Pavement Analysis and Design)	UK Highway Agency method (TRRL Report 87)	ME-PDG method (USA)	Romanian NP 081- 2002
Structural model: Finite Element(FE) or Layered (L)	L	FE	FE
Fatigue cracking model:	TP&CS	TP	TP&CS
Combined loading /Truck Placement(TP) and Curling Stresses(CS)		&CS	
Pumping and Erosion models(P&E)	-	P &E	-
Faulting model (F)	-	F	-
Joint Deterioration (JD)		JD	
Punchout model (P)		Ρ	

RO-LTPP research program, ALT facility of Technical University « Gh. Asachi » lasi and the road network

The ALT facility of Technical University »Gh. Asachi »lasi

□ Technical characteristics:

 \downarrow Axle load, P = 115 kN;

4 Wheel velocity, V = 20...40 km/h;

Circulated lane width : 0.65 m(the

same trace), 0.87 m (alternating);

4 Track width, 3.00m

Controlled hydrological conditions

The role of the accelerated tests ALT for validation of the the Long Lasting Rigid Pavement (LLRP) The European FP6 EcoLanes Research Project :

- conceive and experiment the LLRP
- use recycled innovative materials: SRFC
- develop new pavement construction: RCC
- use ALT Facility & Demonstration Projects : Turkey & Cyprus , Romania &UK

Experimental sectors constructed on the circular ALT facility and their rigid pavement structures

Placement of the transducers on the experimental sectors

Structural Design Features for Various EcoLanes Demonstration Projects in Europe

	ROMANIA	CYPRUS	TURKEY
Design traffic (m.s.a of 115kN)	20.43	13.50	14.93
Climate type	111	Ш	=
Modulus of subbase reaction K	58	58	65
Strength of the concrete at 28 days R _{inc (Mpa)}	5.0	4.0	4.5
Flexural strength σ_{tadm}	3.48	3.05	3.17
Thickness of the concrete slab (cm)	22	24	23

Research & Development of the Long Lasting Flexible Pavement (LLFP)

- 1 Classical pavement structure currently used No.1
- 2 The new long lasting pavements LLP 1 No.2
- ③ Classical pavement structure currently used No.3
- ④ The new long lasting pavements LLP 3 No.4
- ⑤ Classical pavement structure currently used No.5
- 6 The new long lasting pavements LLP 3 No.6

The final results of the comparative study of both Classical and LLFP pavements

Classical pavement structure			Long lasting pavement structure-LLFP				
Layer	Design Traffic		raffic	Layer	Design Traffic		
	10	30	60		20	60	120
	msa	msa	msa		msa	msa	msa
Wearing course (MASF 16/SMA)	4	5	5	Upper (Wearing) course (MASF 16/SMA)	5	5	5
Binder course (B.A.D. 25)	6	10	10	Medium Compression Resistance course (Asphalt Macadam)	25	30	30
Bituminous base - AB2	15	15	15	Lower Tensile Resistance course (MASF 8/SMA)	5	5	5
Ballast stabilized with cement	20	20	30	Ballast Subbase	25	30	45
Foundation	25	35	35	Subgrade/Soil Type P5	\$	¢Q	¢Q
Subgrade P5	¢0	60	Ø				
Total thickness (cm)	70	75	95	Total thickness (cm)	60	70	85

Conclusions

use asphalt materials with superior elasticity modulus value (E = 6000...7000 MPa);

- dispose asphalt layers, according the LLFP concept;

 design & construct LLFP with similar or less thickness than classical ones, but capable to support higher design traffic;

- extend the pavement design life accordingly

Т.

Future Research & Development of LLRP & LLFP

Construction of the envisaged ALT experimental sectors & Demonstration projects on the existing road network

Monitoring performances in time and drafting of specific technical recommendations for the design and construction of LLFP &LLRP

Assimilation and implementation of ME-PDG for various climatic regions of Europe (SupeRoad FP7 project proposal)

