

XXIVth World Road Congress Mexico 2011 Mexico City 2011.

"Appropriate Means of Transport for Goods: Results from the Swiss National Research Programme"

Martin Ruesch, McS Civil Engineering

- Rapp Trans Ltd., Zürich, Switzerland
- Member of the Management Board / Partner
- <u>martin.ruesch@rapp.ch</u>
- Member of TC B4 Freight Transport and Intermodality (Delegate of the Swiss Federal Roads Office, FEDRO)

Rapp Trans

Confédération suisse Confederazione Svizzera Confederaziun svizra

Schweizerische Eidgenossenschaft

Table of Content

- Introduction
- Freight Development in Switzerland
- Challenges and Freight Policy
- Strenghts of modes and Potential of Intermodal Transport
- Solutions/Practices to Increase Intermodality
- Conclusions and Recommendations

Switzerland

Key Figures (2010)

- Inhabitants 7.8 mln. (2010)
- Employees 2.7 mln (2010, FTE)
- Surface: approx. 41'300 sqkm
- GDP: 458'809 mln. Euro (2010)
- Transport Network
 Road: 71'460 km (Total)
 1'790 km (Motorway)
 Rail: 5'107 km
 Inland Waterway: Port of Basel
 Airports: Zürich, Basel, Geneva

Objectives of the Swiss Freight Research Programme

Projects of the Swiss Freight Research Programme

- Concept for the Efficient Collection and Analysis of Freight Data
- Freight Transport Intensive Industries and Freight Transport Flows in Switzerland
- Branch specific logistics concepts and freight volumes and their trends
- Freight Transport with Lorries: Developments and Measures
- Logistics/freight requirements regarding the development of the transport infrastructure
- Regulation in Freight Transport Impacts on the Transport Sector
- Information Technology in Future Freight Transport Management
- Impact of combined measures of regulation and infor-mation technologies on transport infrastructure users
- Potential to increase efficiency in the transportation industry through integrated management tools from the perspective of the infrastructure operators
- Site related measures to reduce the environmental impacts of freight transport

Development of Freight Volumes in Tons and Modal Split

Number of Tons per mode 2009 (in %)

_0.1

9.8

Development of Freight Volumes in Ton-km and Modal Split

Number of Ton-kilometres per mode 2009 (in %)

Freight Volumes on the Road Network (2008)

Freight Volumes on the Rail Network (2008)

Güterverkehr 2008: Schiene Trafic marchandises 2008: rail Traffico merci 2008: rotaia Schweizerische Eidgenossenschaft Confedération suisse Confederazione Svizzera Confederazion svizra

Bundesamt für Raumentwicklung ARE Office fédéral du développement territorial ARE Ufficie fédérale delle sviluppo territoriale ARE Uffizi federale da svilup dal territori ARE

Bottlenecks in 2020

Intermodal Rail Transport:

Total 20 mln tons (2008)

- Inland: 3.1 mln tons
- Imp./Exp.: 3 mln tons
- Transit: 14 mln tons

Approx. 5 % of overall volumes

Swiss Inland Intermodal Transport (Main Flows)

Total Versand + Empfang 2008 (Tonnen/Jahr)

Bottlenecks 2020 🔘 Intermodal Terminals

Intermodal Transport: Inland Waterway based (2008)

Volumes:

- 6.1 Mio. Tons (Import)
- 1.2 Mio. Tons (Export)
 (< 2% share of overall volumes)

Modal Split (Import):

• IWW-> Road 37%

IWW-> Rail 63% Modal Split (Export)

- Road-> IWW 7%
- Rail -> IWW 93%

Freight Forecast 2002 until 2030

Freight tkm

- +32% to 78% (R+R)
- +22% to 56% (Road)
- +47% to 112% (Rail)

Depending on Scenario

3. CHALLENGES AND FREIGHT POLICY

3. CHALLENGES AND FREIGHT POLICY

Transport policy based on the principle of sustainable mobility

General Objectives

- Appropriate use of transport means
- Make use of technical possibilities to optimise infrastructures and vehicles
- Optimal use of infrastructures (management before construction)
- The transport modes must bear their uncovered costs, user pays principle
- Increase transport safety
- Coordination of Swiss with European transport policy

Freight related policy objectives:

Promotion of Intermodal Transport

ANNEX

Strengths of different Modes

Road	Rail	Inland Waterway
•Serving the surface	•High mass productivity	•High mass productivity
•High frequency	•High safety	•High safety
•High service degree	•Low costs on long distances	•Low costs
•Low costs on short distances	(direct and shuttle trains)	•Low energy
•High temporal flexibility	•Low energy consumption	consumption
•Short leading times also with small shipments	•Low environmental impact (esp. Pollution)	•Capacity
•Simple information flow	•Night transport (restrictions	
•Personal company	on road)	
•Strong competition	•Low dependency on weather conditions	

Intermodal transport tries to combine the comparative advantages of different modes, but needs transhipment and more organisation

5. POTENTIAL OF INTERMODAL TRANSPORT

What is the Potential for Intermodal Rail Transport? Today's share of intermodal rail transport

	Inland	Import/ Export	Transit
	(mln. t, 2008)	(mln. t, 2008)	(mln. t, 2009)
Road	271.2 (93%)	37.1 (69.7%)	13.36 (39.1%
Rail	16.6 (6%)	13.1 (24.6%)	6.39 (18.6%
Intermodal (Rail-Road)	3.1 (1%)	3.0 (5.7%)	14.45 (42.3%
Total	290.9 (100%)	53.2 (100%)	34.2 (100%
Distance Range	0 – 350 km	200 – 2500 km	300 – 2'500 km

Possible share in the future (from studies):

Inland: approx. 3% (short distances within Switzerland) Import/export: approx. 11% Transit: approx. Up to 60%

Approaches (1/2)

Area	Measures	Status
Regulation	Railway Reform	Implemented (1 step)
	Truck Driving Bans (night, weekend)	Implemented
	Enforcement of road traffic regulations	Implemented
Land Use Planning / Transport Plans	Securing locations for intermodal terminals in national and regional land use plans	Partly Implemented
	Planning / Securing rail freight capacity on rail network	Partly Implemented
	Masterplan Logistics	Proposal
Funding	Co-funding intermodal terminals	Implemented
	Subsidies for intermodal transport operation	Implemented
Infrastructure	New railway tunnels through the alps Railway by passes in conurbations (for freight)	In implementation Partly Planned

Approaches (2/2)

Area	Measures	Status
Operation / Traffic Management	Gotthard dosing system for truck traffic Truck information system Interoperable railway freight traction Terminal management systems Intermodal booking, tracking and tracing	Implemented Implemented Implemented Partly Implemented Partly Implemented
Economical	Heavy Vehicles Fee Alpine Transit Freight Exchange	Implemented In Discussion
Intermodal concepts	Intermodal Waste Logistics (KVA Thurgau) Rail and Transhipment (SBB Cargo)	Implemented Partly Implemented
Intermodal Statistics	Improving Intermodal Statistics	Proposal

New railway tunnels through the alps

- Improved railway connections
 - Gotthard Tunnel: 57 km
 - Lötschberg Tunnel: 34 km

Improving railway / intermodal transport

-Increasing efficiency (shorter leading times, higher productivity)

- Increasing reliability

Start of operation

- 2007 Lötschberg
- 2017 Gotthard

Heavy Vehicles Fee

Legal basis:

 Federal Law for the Distance-related HVF of 19.12.1997

Objectives:

- True Costs
- Demand Management
- Reduction of Alpine transit road traffic and shift to rail

Subject: Heavy Vehicles > 3.5 tons Infrastructure: <u>All</u> public roads Tariffication:

- per Kilometre and per Ton
- Emission-dependent
- 40 t truck: ~0.75 Euro per km

Operator: Swiss Customs Authority

Co-funding of Terminals National law for terminal funding Financed elements:

- buildings/ infrastructure
- installations and equipment
- rolling stock
- other investments

Maximum share of co-financing is 80% Minimum requirements:

- Modal shift from road to intermodal transport
- Need for transhipment capacity
- Investment is necessary to reach policy aims
- Terminals would not be built without financial aid.
- Acceptable cost/benefit factor

Terminal funding outside CH possible Switzerland funded terminals 2002-2008 with 12 to 75 Mio CHF per year (1CHF=0.8 Euro).

resent traffic situation in Switzerland on transit reads for long-distance heavy traffic)

Truck Information System Objectives

- Optimal use of transport capacity
- Support trip and route planning
- Support modal shift

Main features of the service

- Real time traffic situation on road / rail
- Weather / Road Conditions forecasts
- Intermodal routing
- Explanation of permanent traffic management measures, intermodal supply, policy and legal background

Organisation

- Public Private Partnership
- Operated by the Swiss Federal Roads Office

www.truckinfo.ch

National Masterplan Logistics

Objectives

- Coordination between land use, transport planning and requirements of logistics/transport activities
- Securing necessary space for logistics activities and capacity on transport network
- Promotion of Intermodal transport

Content

- Freight policy objectives
- Freight relevant transport network
- Locations for Freight Villages and intermodal terminals
- Priority areas for industrial zones with rail access option
- Infrastructural and land use measures to provide space and capacity for freight/Logistics

Responsibility

• DETEC: Department for Transport, Energy and Communication

Trans - Alpine Crossing Freight Exchange Basic idea

• Reduction of road freight transport through the Alps for ecological reasons

- Constitution → Target of max. 650'000 trucks over the Swiss Alps
- Management of truck freight transport using economical instruments

Modal Shift

Cap-and-Trade

- Mandatory transit pass which is tradeable
- Limitation to 650'000 truck passages
 per year

Electronic charging and enforcement system

- telematics applications with on board units, point of sales, charging and enforcement stations
- back office system

Results of studies

- Alpine Crossing Exchange technical and operational feasible
- Target of 650'000 trucks per year could be reached

 Implementation only in coordination with neighbouring countries possible →It is still open if and when such a system will be implemented

Improving Intermodal Statistics

Situation

- Mode based statistics
- Lack of good data for intermodal transport

Objectives

 Reliable data on intermodal transport for observation, monitoring and controlling

Elements/Indicators

- Loading units, tons, ton-km per year by commodity group and traffic type and O-D pair
- Differentiation by loading unit type

- Differentiation mode combinations
- Loading-units and tons by terminal, port, etc.

Methods

 Yearly business surveys (railways, terminal operators, port operators)

7. Conclusions and Recommendations

- Need for action to make freight transport more sustainable
- Increase the share of intermodal transport is one solution, but not the only one
- Different approaches possible to support intermodality
- Not one single measure but a bundle of different measures needed to support intermodality
- Measures must be based on a clear freight policy
- Measures showed **positive effects on intermodal transport**, but intermodality is not the only solution
- Measures need acceptance especially radical ones → public involvement important

More Information

- Swiss Federal Roads Office: <u>www.astra.admin.ch</u>
- Freight Research Programme Manager: Christoph Stucki, <u>christoph.stucki@tc-teamconsult.com</u>
- Rapp Trans Ltd: Martin Ruesch, <u>martin.ruesch@rapp.ch</u> Member of PIARC TC B.4 Freight Transport and Intermodality

Schweizerische Eidgenossenschaft

Confédération suisse

Confederazione Svizzera Confederaziun svizra

Rapp Trans AG Uetlibergstrasse 132 CH-8045 Zürich Tel. +41 43 268 60 30 Fax +41 43 268 60 40 www.rapp.ch

ANNEX

The Research Programm «Strategies for an Appropriate Use of Transport Means in Freight Transport"

- Patronage (Lead): Swiss Federal Roads Office
- Duration: 2009-2012
- Advisory Board: Representatives of National Authorities, Logistics and Transport associations and Professional Bodies

• **Co-Financing:** Swiss Federal Office of Transport, Swiss Federal Office of Spatial Development, Swiss Federal Office of Environment, Swiss Federal Office of Statistics

• Program Manager: Christoph Stucki

Status of projects of the Research Program

Nb	Title	Status	Results
А	Concept for the Efficient Collection and Analysis of Freight Data (A)	Running, finished in March 2012	Interim results available on freight data needs, SWOT of Swiss freight Statistics
B1	Freight Transport Intensive Industries and Freight Transport Flows in Switzerland	Completed	Complete report soon available
B2	Branch specific logistics concepts and freight volumes and their trends	Started, finished mid of 2012	No interim results available
B3	Freight Transport with Lorries: Developments and Measures	Running, finished end of 2012	Interim results available on current situation and trends
С	Logistics/freight requirements regarding the development of the transport infrastructure	Started, finished mid of 2012	Interim results available on current situation and forecast 2030
D	Regulation in Freight Transport – Impacts on the Transport Sector	Completed	Complete report soon available
E	Information Technology in Future Freight Transport Management	Running, finished end of 2012	Interim results available on technologies and their impact
F	Impact of combined measures of regulation and infor- mation technologies on transport infrastructure users	Started, finished mid of 2012	No interim results available
G	Potential to increase efficiency in the transportation industry through integrated management tools from the perspective of the infrastructure operators	Started, finished mid of 2012	No interim results available
Н	Site related measures to reduce the environmental impacts of freight transport	Started, finished mid of 2012	Results on current situation on environmental impact

Swiss Logistics Market

Key Figures (2010)

- 165'800 Employees
- Market volume: 28'750 mln Euro 6.5% of GDP
- Share of Services
 43.7% Transport
 23.5% Storage
 17.7% Handling/Transship.
 15.1% Various

ANNEX

Cost comparison of different modes

long distance (800-1000 km)

 2 x 50 km pre- and endhaulage (intermodal)

CO2-Emissions of different modes

- Operation incl. energy production and veh. maintenance
- Indirect emissions: vehicle production, infrastructure construction, etc.

CO2-Emissions by trucks on the road network (2010)

Decision Factors for Modal Choice

Main Decision Makers: Shippers, Forwarders, Logistics and transport service providers, Ocean Carries

Main decision factors

- **Cost- and quality criteria** (price, reliability, flexibility, leading time, frequency, safety, Security, added value services, etc.)
- Market criteria (Shipper characteristics as size, locations, logistics concept, commodities, shipments, distances, economical framework c.)
- Infastructure criteria (Link and node capacities and densities, private sidings, Intermodal terminals, etc.)
- Institutional criteria (Regulation, Standards, Incentives, etc.)

UD

Strengths/Weaknesses of Road Freight Transport

Strengths	Weaknesses
 Serving the surface 	 Low mass productivity
High frequency	 Ecololigical impact (Noise,
 High service degree 	Pollution, Energy Consumption,
 Low costs on short distances 	Use of Space)
High temporal flexibility	 Traffic Safety
 Short leading teams also with 	 Dependency on congestion and
small shipments	weather conditions
Simple information flow	Legal Restrictions (Night traffic
Personal company	ban, weekend traffic ban, bans for
 Strong competition 	

ANNEX

Strengths/Weaknesses of Rail Freight Transport

Strengths	Weaknesses
 High mass productivity 	 Surfing the surface (last mile)
 High safety 	 Low temporal flexibility
 Low costs on long distances (direct 	• Noise
and shuttle trains)	 High costs on short distances and
 Low energy consumption 	with shunting processes
 Low environmental impact (esp. 	 Capacity conflicts
Pollution)	(passenger/freight)
 Night transport (restrictions on 	 Planning/Organisation effort
road)	 Partly limited competition
 Low dependency on weather 	
conditions	

Strengths/Weaknesses of Intermodal Rail Freight Transport

Strengths	Weaknesses
 High mass productivity 	 Low temporal flexibility
 High safety 	• Noise
 Low costs on long distances (direct and shuttle trains) 	 High operation costs on low distances and with shunting
 Low energy consumption 	processes
 Low environmental impact (esp. Pollution) 	 Capacity conflicts (passenger/freight)
 Night transport (restrictions on 	 Planning/Organisation effort
road)	 Partly limited competition
Financial incentives	 Costs and time needs for
 Higher max. Weight in Pre-/Endh. 	transshipment

What is the Potential for Intermodal transport (2030)? Structure

Inland: Modal Shift by O-D

Import/Export: Modal Shift by Distance Class

ANNEX

Intermodal Waste Logistics (1/2)

Situation / Problem

- New waste incineration plant in the Canton of Thurgau → Longer distances for waste transports
- Efficient and ecological logistics and transport concept needed with the use of rail

Measure/Solution

- Integral disposal system
- Intermodal solution consisting off
 - ACTS-System with compress containers
 - 5 regional intermodal transfer points
 - 3 Regional waste treatment faciliites
 - Optimisation of collection tours

ANNEX

Intermodal Waste Logistics (2/2)

Effects/Experiences

- More than 50% rail share (before 0%)
- Increasing payload of trucks (about 50%)
- Higher collection performance
- Reduction of collection vehicles by 50%

2006

2007

- Reduction of truck-km (20%)
- Reduction of overall costs (8-10%)

