

XXIVth World Road Congress Mexico 2011 Mexico City 2011.

MAKING EXISTING ROADS OPERATE BETTER

Andrew Somers

- VicRoads, Australia
- Business Development Manager
 Intelligent Transport Systems
- andrew.somers@roads.vic.gov.au

Melbourne's transport demands are growing

5m by 2030

10% annual growth

•80% services use roads•6% annual growth

There is no single solution to managing congestion

- Integrate transport & land use
- Encourage more sustainable modes
- Better manage existing roads
- Traveller information
- Build new infrastructure

Prioritising modes on a road - Brussels

Melbourne – how to prioritise?

Melbourne – how to prioritise?

Melbourne – how to prioritise?

SmartRoads uses a simple 3 step framework

Road Use Hierarchy

A Road Use Hierarchy was developed in consultation with local government

There are network operating plans covering all of Melbourne over 4 time periods

High Street, Kew - Network Operating Plan (high off-peak)

Level of Service is used to measure how well we are going against the plan

	Level of Service		X	ోం		
	A	No route delay. Always runs to timetable.	Opportunities to cross within 50m. Minimal crossing delay.	High degree of separation. Minimal delay.	No delay. No variability.	No delay. No variability.
	В					
	C	Stop at every set of signals. Within 5 min of timetable.	Crossing within 200m. Average crossing delay is 45 sec.	On-road bicycle lane.	Stop at every set of signals.	Stop at every set of signals.
	D					
	8	Takes at least 3 signal cycles to clear intersection.	Crossing within 400m. Average crossing delay is 90 sec.	Bicycles share traffic lanes.	Takes at least 3 signal cycles to clear intersection.	Takes at least 3 signal cycles to clear intersection.
	F					

reducing performance

Bottlenecks in operation can now be identified

SmartRoads

A plan for how the road network needs to operate

- Better manage use of roads
- Links transport to land use
- Encourages walking and cycling
- Emphasis on moving people and goods
- Balances competing demands for road space

An internal culture change

Leadership and direction

"VicRoads will use the Network Operating Plan to inform all decisions that affect the way the arterial road network operates."

Where SmartRoads is being used

- Over 200 project proposals within VicRoads
- Major Projects
- Planning studies
- Activity centre planning
- Reviews of traffic signal operation
- Growth area planning
- Rural centres
- Local government planning

What SmartRoads is delivering

- A way to engage and consult with stakeholders
- A focus on moving people and goods NOT vehicles
- Encouragement for walking and cycling
- Integrated transport and land use decision-making
- A process that brings planners and operators together
- Triple bottom line approach to operational decisions
- Transparency in decision-making
- A change in how we think about transport

