

XXIVth WORLD ROAD CONGRESS Mexico City 2011

CO2 Reducition and Automotive Technology: The Road Ahead

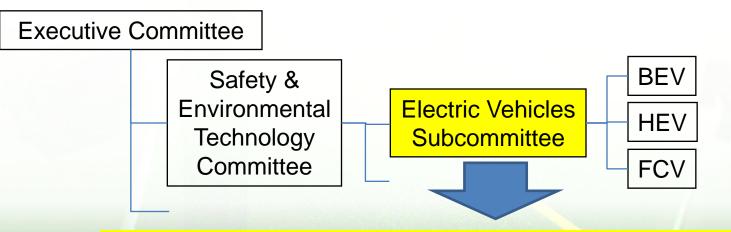
Masafumi Usuda

- Japan Automobile Manufacturers Association, Inc.
- Chairman, Electric Vehicles Subcommittee
- Masafumi_Usuda@n.t.rd.honda.co.jp

Contents

- About JAMA
- CO₂ Emissions in Transport
- Reducing CO₂ Emissions in Road Transport
- Next Generation Vehicles
- Conclusion

About JAMA

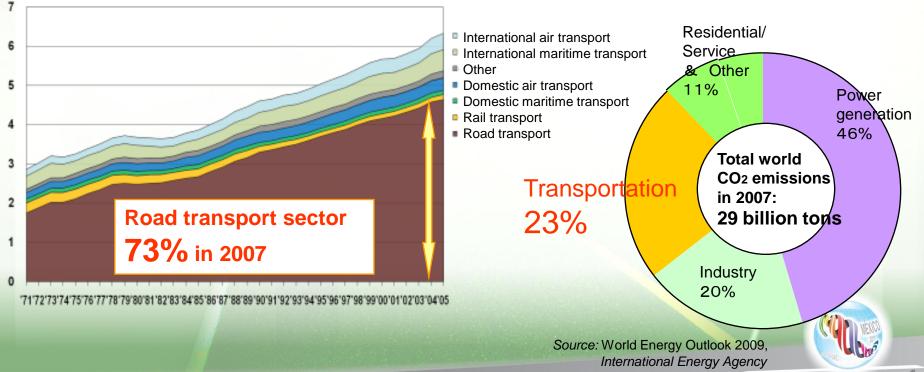

(Japan Automobile Manufacturers Association, Inc.)

Objectives

To promote the sound development of the Japanese automobile industry and contribute to social and economic welfare. Member Companies (14 in total)

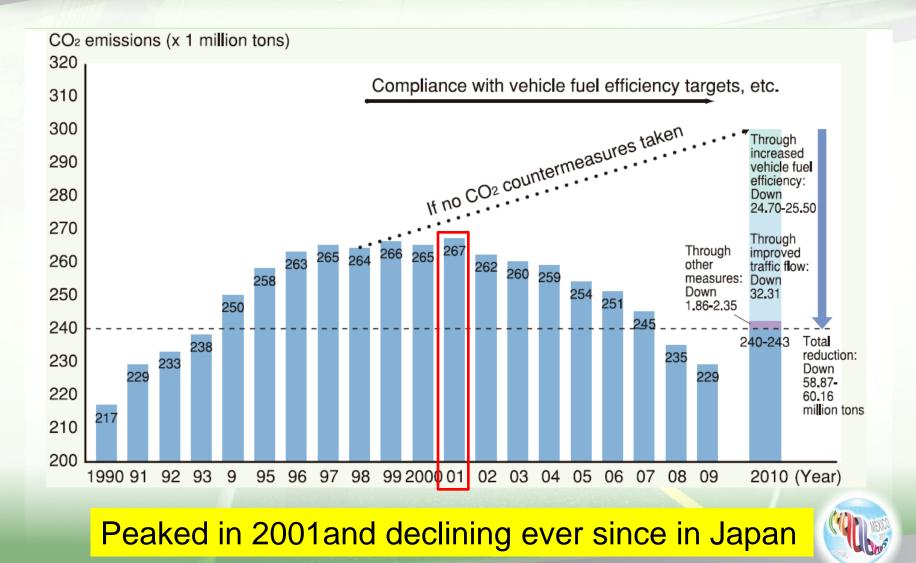
Daihatsu, Hino, Honda, Isuzu, Kawasaki, Mazda, Mitsubishi, Mitsubishi Fuso, Nissan, Subaru, Suzuki, Toyota, UD, Yamaha

Organization (part of JAMA)

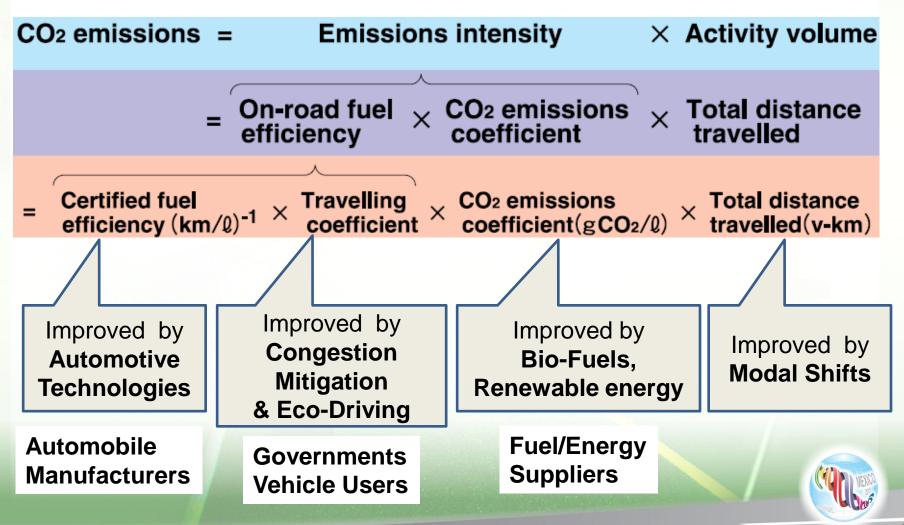

To promote the sound development of Electric-powered vehicles

Ulan

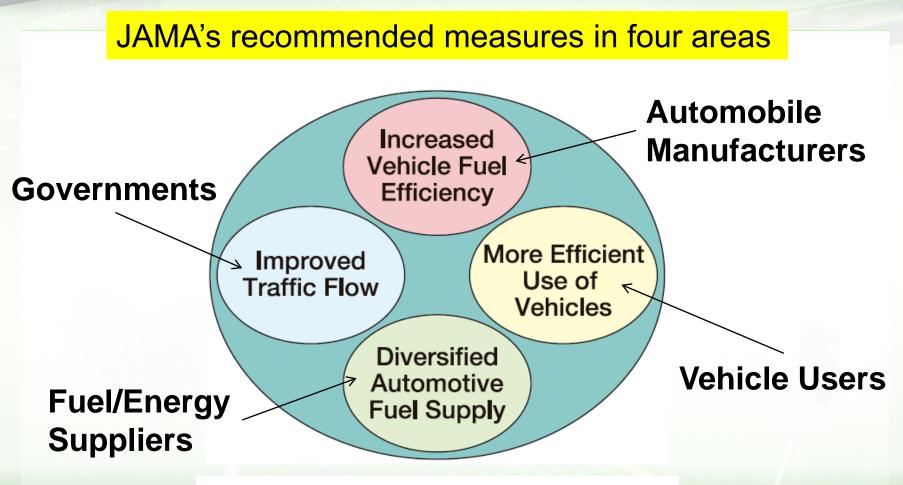
CO2 Emissions in Transport: Global


- Steady increase to 29 billion tons in Total
- About 23% of total worldwide CO2 emissions in 2007
- Roughly 73% was generated by road transport.

CO2 Emissions in the Global Transport Sector


World CO₂ Emissions by Sector

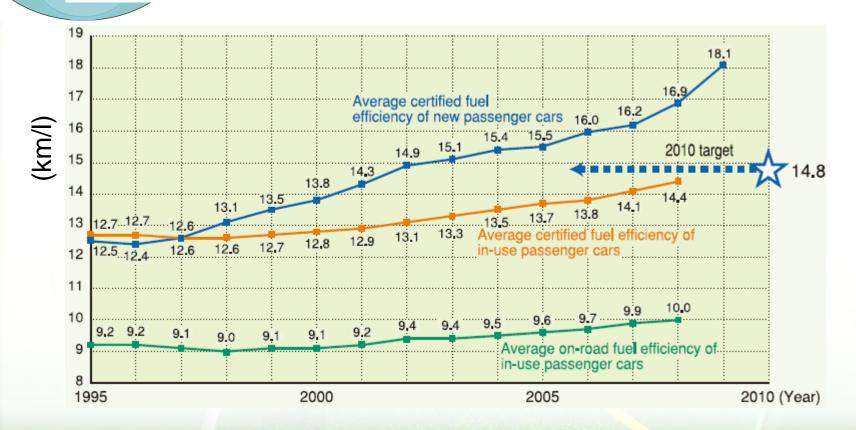
CO2 Emissions in Road Transport: Japan



Reducing CO₂ Emissions

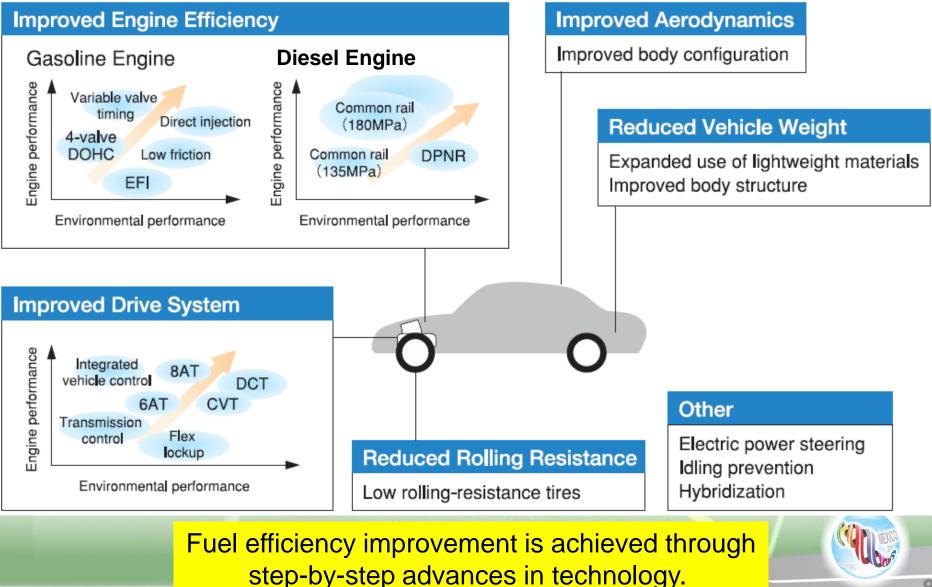
Calculating CO₂ Emissions in Road Transport Sector

Integrated Approach to CO₂ Emissions Reduction


Cooperative efforts are needed among all the concerned parties

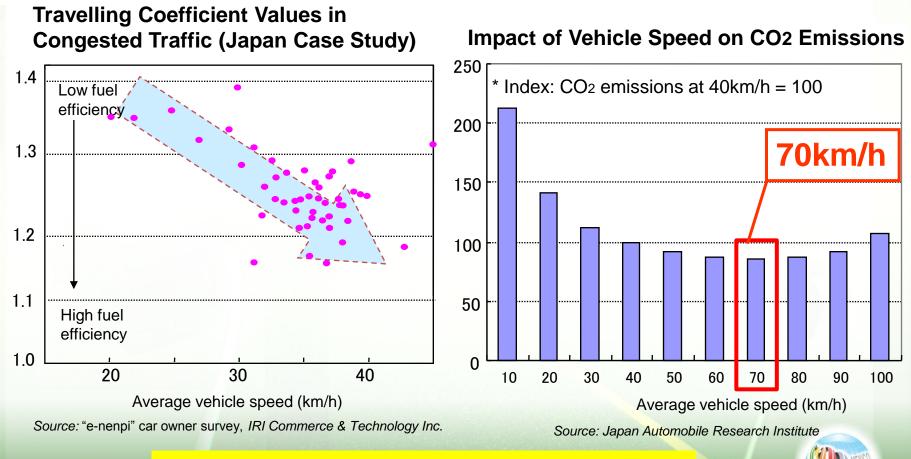
Increase Vehicle Fuel Efficiency

Average fuel efficiency of passenger cars in Japan


Increased Vehicle Fuel

Efficiency

JAMA achieved steady increases in fuel efficiency and is expected to improve even further.


Vehicle Technologies Increasing Fuel Efficiency

Improve traffic flow

Improved Traffic Flow

Improved road traffic flow increases vehicle travelling speed

Upgrading road networks and infrastructure to reduced road transport CO₂ emissions

Improved traffic flow (Tokyo, Japan)

JAMA calculated CO₂ reduction by new bypass road as **20kt-CO₂** per year with our transportation static data.

11

Improve traffic flow

Road congestion mitigation

To improve traffic flow, road construction and road infrastructure developments are required, including the implementation of Intelligent Transport Systems.

• Urban planning

Low-carbon urban planning should incorporate effective road congestion mitigation measures, including road network development and ITS applications, from earliest stage of planning.

Efficient Use of Vehicles

More Efficient Use of Vehicles

Eco-driving helps reduce fuel consumption/CO₂ emissions, using fuel efficiency gauges and digital tacho-graphs .

Wide variety of eco-driving support tools are being installed

Efficient Use of Vehicles

On-road CO2 emissions are estimated to decrease by roughly 10% through the adoption of fuel-conserving eco-driving practices.

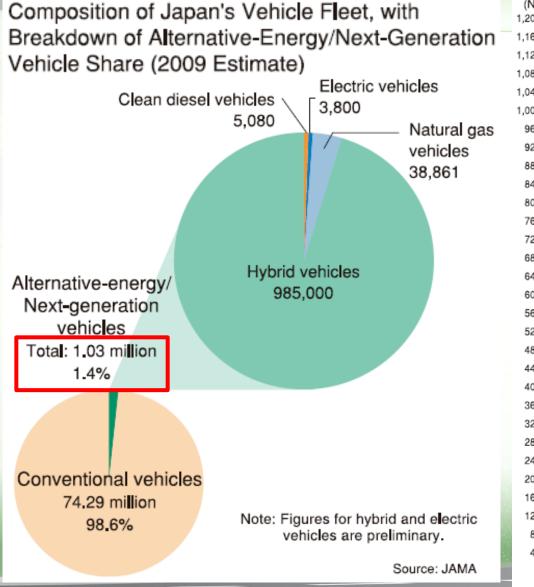
Impacts on Vehicle Fuel Efficiency of Selected **International Eco-driving Program Initiatives**

Country	Scope of Initiative	Impact (Short-Term)	Impact (Mid-Term)				
Netherlands	National	Up 10-20%	Up 5-10%				
Austria	National	Up 10-15%	Up 5-10%				
Japan	-Driver training courses -Eco-driving contests	Up 12% Up 25%					
Germany	-National (new drivers) -Professional fleet drivers -Passenger-car driver training courses	Up 6-10% Up 10-25%	Up 6-10% Up 6-8% Up 10-15%				
UK	Fleet operators/drivers	Up 10%					
Source: Workshop on Eco-driving, International Energy Agency (2007)							

Source: Workshop on Eco-driving, International Energy Agency (2007)

Increased Unicle Fuel Efficiency Improved Traffic Flow Use of Vehicles Diversified Automotive Fuel Supply

- Low-carbon fuels and sources of energy, such as biofuels and electric power generated by renewable energy, should be facilitated in line with national requirements
- Cellulosic ethanol and biomass-to-liquid fuels which have no adverse impacts on food supply and soil quality
- Technological development should be advanced through the cooperated efforts of industry, government and academia.



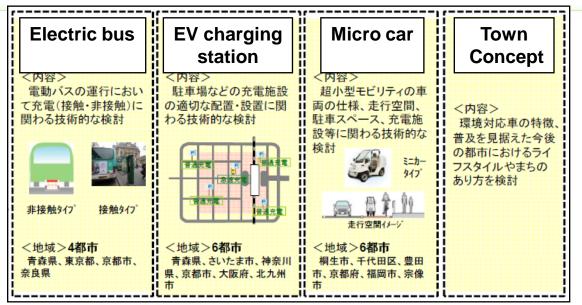
Next Generation Vehicles

Expanded to 26/571 models in 2009 in Japan

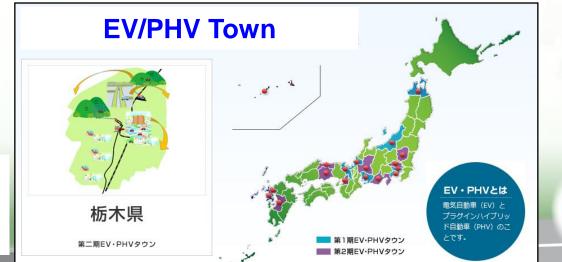
Next Generation Vehicles

	ehicles in u	ise)					
200,000							
160,000		Clean diesel vehicles					
120,000		Natural gas vehicles					
,080,000		Electric vehicles				Total: 1	,033,000
,040,000		Hybrid vehicles					- 5,080
,000,000							38,861 3,800
960,000							0,000
920,000							
880,000							
840,000							
800,000							
760,000							
720,000							
680,000							
640,000							
600,000						7,797·	
560,000							
520,000							
480,000					465,924-		985,000
440,000							500,000
400,000				377,661			
360,000							
320,000			287	7,004			
280,000							
240,000			223,630				
200,000					. <mark></mark>		
160,000							
120,000		109,1 87,286	/29				
80,000		43,512 58,978					
40,000	2,415 2,919 7,0	27.128					
0					0007 00		
	1995 1996 19	97 1998 1999 2000 2001 200	12 2003 2004 20	005 2006	2007 20	08 20	09'

Electric-powered Vehicle's Issues for widespread use

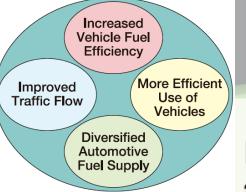

 Hybrid & Plug-in Hybrid Vehicles: are expected to be in widespread use in the near future assuming that cost reductions can be achieved and battery performance improved.

 Battery Electric Vehicles: The major challenges are their driving range, cost, and durability which will ultimately resolved mainly by breakthrough battery technology.
Charging infrastructure implementations are necessary.


 Fuel Cell Vehicles: are expected to drastically reduce our dependence on fossil fuels. Breakthrough technologies are needed to reduce FC costs and improve their durability.
Hydrogen-supply infrastructure developments are necessary.

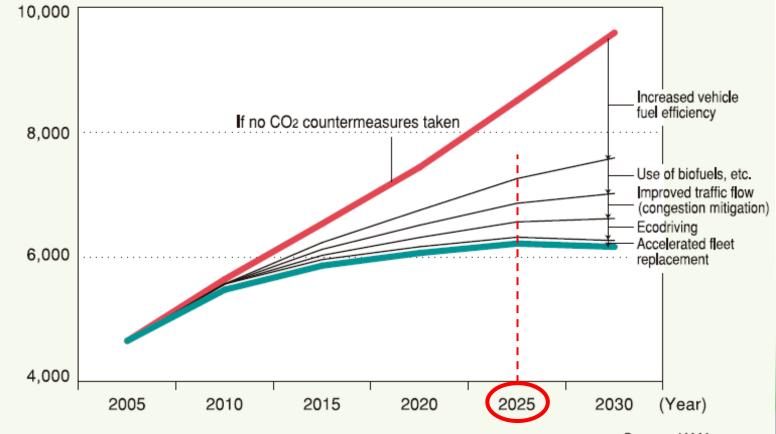
Demonstration experiments in Japan

Town development with Eco-friendly Vehicle



Source: Ministry of Land, Infrastructure, Transport and Tourism (MLIT)

Source: Minister of Economy, Trade and Industry (METI)


Conclusion 20

Impact of the integrated approach

CO2 Emissions Reduction Potential in the Global Road Transport Sector assuming the implementation of recommended measures

CO2 emissions (x 1 million tons)

Recommendation

Driving Sustainability through an Integrated Approach

ustainability

Thank you for your attention

Japan Automobile Manufacturers Association, Inc. http//www.jama.or.jp