XXIVth WORLD ROAD CONGRESS Mexico City 2011

CONNECTED VEHICLE RESEARCH IN THE UNITED STATES

Shelley Row

- Intelligent Transportation Systems Joint Program Office, Research and Innovative Technology Administration, USDOT
- Director
- Shelley.Row@dot.gov

ITS RESEARCH = MULTIMODAL AND CONNECTED

Drivers/Operators

Wireless Devices

WHAT IS THE CONNECTED VEHICLE PROGRAM

- Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) wireless communications for:
 - Crash prevention
 - Improved mobility

- Environmental sustainability
- Connected vehicle capability addresses over 80% of unimpaired crash scenarios
- Encompasses autos, buses, and trucks

CONNECTED TRANSPORTATION

ITS RESEARCH PROGRAM COMPONENTS

SafetyMobilityEnvironmentV2VV2ISafety
PilotReal Time
Data Capture
&
ManagementDynamic
Mobility
ApplicationsAERISRoad
Weather
Applications

Harmonization of International Standards & Architecture

Human Factors

Systems Engineering

Certification

Test Environments

Technology

Applications

Deployment Scenarios

Financing & Investment Models

Operations & Governance

Institutional Issues

KEY PROGRAM OBJECTIVES

- 2013 Decision on Vehicle Communications for Safety (light vehicles)
- 2014 Decision on Vehicle Communications for Safety (heavy vehicles)
- 2015 Infrastructure Implementation Guidance

NHTSA AGENCY DECISION

- Possible decision options include:
 - Rulemaking on minimum performance requirements for vehicle communications for safety on new vehicles
 - Inclusion in NHTSA's New Car Assessment
 Program to give car makers credit for voluntary inclusion of safety capability in new vehicles
 - More research required

NHTSA AGENCY DECISION (CONT.)

- Data will determine NHTSA's action for the 2013 decision point:
 - Simulation and modeling efforts based upon previous field operational tests
 - Data collection from V2V test track testing
 - Empirical data obtained from Safety Pilot
 - Driver clinics (user acceptance)
 - Model deployment activities (safety effectiveness)
- A key factor for the NHTSA decision will be the need for, and timing of, necessary infrastructure for communication security (still undefined)

SAFETY PILOT OBJECTIVES

- Generate empirical data for supporting 2013 and 2014 decisions
- Show capability of V2V and V2I applications in a real-world operating environment using multiple vehicle types
- Determine driver acceptance of vehicle-based safety warning systems

SAFETY PILOT SITES

Driver clinics

Assess user acceptance

Six Driver Clinic Sites

Large-scale model deployment

 Obtain empirical safety data for estimating safety benefits

Deployment Site

Connected Vehicle Safety Program Partners and Contractors

USER ACCEPTANCE -- DRIVER CLINICS

- 6 locations across the U.S. beginning in August 2011
- 100 drivers per location
- Experience crash warnings
 - Forward Crash Warning
 - Emergency Brake Light
 - Blind Spot Warning
 - Lane Change Warning
 - Intersection Assist
 - Do Not Pass Warning

MODEL DEPLOYMENT

- Major road test and real-world implementation taking place from 2011 thru 2013, involving:
 - Approximately 3,000 vehicles
 - Multiple vehicle types
 - Fully integrated systems and aftermarket devices
 - Roadside infrastructure
 - System-wide interoperability testing
- Also to test
 - Prototype security mechanisms
 - Device certification processes

Integrated Vehicles

Integrated Trucks

Aftermarket Devices

Basic Safety Devices

Roadside Infrastructure

AFTERMARKET SAFETY DEVICES

- Devices that transmit and receive the Basic Safety Message
 - Driver interface for safety warnings
 - No integration with vehicle
- 4 vendors currently underway
- Applications include:
 - CICAS-V (red light warning) (V2I)
 - Curve overspeed warning (V2I)
 - Emergency electronic brake light (V2V)
 - Forward collision warning (V2V)
- Qualified Products List (QPL) projected for March 2012
- Safety devices must comply with NHTSA driver interface criteria before being released to drivers for model deployment

BASIC COMMUNICATION DEVICES

- Devices that only transmit the Basic Safety Message
 - No driver interface
- Initial procurement resulted in 8 awards
 - 6 vendors made it to acceptance testing
 - No vendors fully complied with the tests
 - Specification was considered by the U.S. DOT as still weak
 - U.S. DOT updated specification and issued 2nd procurement
- 2nd procurement resulted in 4 awards
 - Currently underway
- QPL estimated to be established later this year

ROADSIDE EQUIPMENT FOR SAFETY

- Transmission and receipt of V2I messages
 - Interfaces with signal controller (at intersections)
 - Supports other dangerous road segment applications
- Applications supported
 - CICAS-V (red-light warning)
 - Curve overspeed warning
 - Collection of probe data transmissions
 - Other (tbd)
- 4 vendors currently underway
- QPL projected for January 2012

ITS RESEARCH PROGRAM COMPONENTS

SafetyMobilityEnvironmentV2VV2ISafety
PilotReal Time
Data Capture
&
ManagementDynamic
Mobility
ApplicationsAERISRoad
Weather
Applications

Harmonization of International Standards & Architecture

Human Factors

Systems Engineering

Certification

Test Environments

Technology

Applications

Deployment Scenarios

Financing & Investment Models

Operations & Governance

Institutional Issues

DEFINE THE SYSTEM AND ESTABLISH A TESTING ENVIRONMENT

BUILD A REFERENCE IMPLEMENTATION

2011

 Test bed is up and running. Interoperable equipment in California, Florida, New York, Michigan, and Virginia, and network operations in Tennessee

2012 to 2013

Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) Technology Test Bed and Affiliated Interoperable Test Beds

- Reflect the system architecture
- Utilize harmonized international standards
- Implement a certification process
- Implement a governance process
- Implement a security process

ITS RESEARCH PROGRAM COMPONENTS

SafetyMobilityEnvironmentV2VV2ISafety
PilotReal Time
Data Capture
&
ManagementDynamic
Mobility
ApplicationsAERISRoad
Weather
Applications

Harmonization of International Standards & Architecture

Human Factors

Systems Engineering

Certification

Test Environments

Technology

Applications

Deployment Scenarios

Financing & Investment Models

Operations & Governance

Institutional Issues

DEPLOYMENT SCENARIOS

V2V Security Network

- Options:
 - DSRC for security: Estimated at 40,000 RSEs; not necessarily owned/operated by Federal/State/local governments
 - Cellular or WiFi: Infrastructure exists; must address privacy
 - No infrastructure: Unlikely to meet our needs but worthy of consideration
- All require a sustainable funding stream and governance structure
- V2I could be implemented in spot locations

CONNECTED TRANSPORTATION

FOR MORE INFORMATION

www.its.dot.gov

