

XXIVth World Road Congress Mexico 2011 Mexico City 2011.

THE CHALLANGE OF INCLUDING SYSTEM EFFECTS AND SYSTEM BOUNDARIES INTO THE ENVIRONMENTAL EVALUATION OF ROAD PROJECTS

Prof. Dr. Thomas Macoun

University of Technology, Vienna, Austria

Institute of Transportation, Research Centre of Transportation PLanning and Traffic engineering

Email: thomas.macoun@tuwien.ac.at

SYSTEM ANALYSIS

THE THREE SPHERES OF SUSTAINABILITY

Worker's Rights

University of Michigan Sustainability Assessment

A WIDER SYSTEM PERSPECTIVE HAS TO BE CONSIDERED REGARDING AS IS POSSIBLE

>Environmental, social and economic impacts collectively;

Indirect and secondary effects (positive or negative) of developments;

Cumulative effects of developments (e.g. combined impact of multiple projects);

Effects whose impacts are temporally delayed (e.g. experienced by future generations);

Effects which have a long range, transboundary of global dimensions (e.g. green house gas emission);

Impacts by different social groups, particularly those most disadvantaged;

Impacts on critical natural systems;

Development alternatives which only become apparent when a wider perspective is taken (e.g. evident at the strategic but not project level).

The Occurance, Cause and Potential of different kinds of effects

	Direct effect	Indirect effect	Cumulative effects
Occurence	Over a short distance, and at the time of construction and in operation	Like a direct effect but at a later time and/or in farther distance	In general at a later time and/ or in a farther distance
Cause	Single project	Direct and indirect effect of a single project	Direct and indirect effect of a single project and effects of other activities
Possibility of prediction	Based on clear causal connections	Based on high probability	Based on high probability

ASSESSMENT METHODS

CBA VERSUS MCA (Summarizing versus reducing)

COST-BENEFIT- ANALYSIS (CBA)

Decission maxim: Maximizing the welfare of the total society (Analoguos to business investment calculations)

Proceeding:

System of objectives, Assessment by prices, Fixing discount rate,

SUMMARIZING APPROACH

MULTI-CRITERIA ANALYSIS (MCA)

Arranges alternatives related to multiple objectives by preferences of assessers

Proceeding:

System of objectives, weight objectives, grade of fulfilling objectives,

Selection of important and fitting indicators to picture a system

REDUCING APPROACH

in principle: all methods of evaluation are subjective!

KEY AND SIMPLE COMPOSITE INDICATORS

Key indicator Simple composite indicator

ASSESSMENT METHODS

COVERAGE OF A COST BENEFIT ANALYSIS

HUMANS PERCEPTION

PERCEPTION PRIORITIES OF HUMANS

HUMANS PERCEPTION

RANKING OF INDICATORS ACCORDING TO THEIR WEIGHTS IN A MCA

ANALYSIS OF SYSTEMS Learning of evolutionary proved systems

SYSTEM THEORIES dealing with

>SYSTEM EFFECTS

Identify intelligent KEY - Indicators (System-crossing Indicators, Distance to target indicators)

Constants and **Variables** in a System of Feedbacks and Side Effects

>SYSTEM BOUNDARIES

Limited Resources (Global Individual)

Flux balance in an ecologic sense

SYSTEM EFFECTS

CONSTANTS AND VARIABLES OF MOBILITY

SYSTEM BOUNDARIES

IDENTIFYING WASTE OF ENERGY AS A PROBLEM OF FINANCIAL SUSTAINABILITY – Lessons from the US

Consumer price index for all urban consumers (CPI-U), US. Average, by expenditure category and commodity and service group, Month December

Source: US Department of Labor

Category "Motor fuel" (2001-2007)Metropolitan households2,3% to 4,9%Rural areas3,0% to 6,7%

SYSTEM BOUNDARIES

IDENTIFYING WASTE OF ENERGY AS A PROBLEM OF FINANCIAL SUSTAINABILITY – Lessons from the US

Expenditures for specific categories of transportation in %

Compensation Strategies of households

Source: Consumer price index for all urban consumers (CPI-U), US. Average, by expenditure category and commodity and service group, Month December

Source: US Department of Labor

STEP BY STEP

Enhancing the system boundaries step by step

4 Including other modes

5,6 Including time and spatial structures

7 Including global aspects

STEP BY STEP

SEVEN STEPS OF ENLARGING THE VIEWED SYSTEM TOGETHER WITH CHANGING «BEST FITTING» INDICATORS EFFECTS ON THE ASPECTS "TIME", "SPACE" and "CAUSALITIES"

	Indikators	Time	Space	Methods
1	Number of vehicles	Status- quo Simulation	Street section	counts in cross sections
2	Traffic amount	Mostly Status- quo Lineare Forecasts or Motorisation rate	Corridor	counts in cross sections Calculations
3	Traffic amount	Forecasts or Motorisation rate	Borders by Distributions of trip lenght	counts in cross sections Calculations
4	Modal-split	Szenarios	Distributions of trip lenght ,,ecological backpack	Simulation results, Trip chains
5	Modal - split	Szenarios	Distributions of trip lenght ,, ecological backpack,	Simulation results, Trip chains
6	Modal- split (Energie)	Szenarios	Settlement or regional areas	Models
7	Energy, CO ₂	Szenarios	global	Models

STEP BY STEP

Ratio of targeted returns for the example of the road construction project B111 (« Road Drautal»), Carinthia, Austria

CONCLUSIONS

Between methods and criteria/ indicators as used are feedbacks given, a plenty of possibilities of affecting the results is given

The complexity of effects is increasing with increasing system, the technicalscientific demand on exactness on the other hand leads in most cases to a very small system part taken into acount

The choice of the system boundaries influences the choice of the most useful indicator

Percepting, assessing and acting is done by human beings. Related to the motives and the steering of behaviour there is a high degree of unconscious levels given which are steered by the environment

>Objectives of higher theoretic systems (economical systems, social systems) are overtaken into assessment procedures by concious and unconscious reasons.

THANK YOU FOR YOUR ATTENTION

thomas.macoun@tuwien.ac.at

Example of a ranking of alternatives

Range	Scenario		SIM 1		SIM 2	SIM 3
1.	1A		E		↓ 0 -	→ 0
2.	1B/1		2A		/ 2A	E
3.	Е		2	/	E	2A
4.	2A		1A		2	3B
5.	2		1B/1	/	3B	2
6.	1C		1C /	/	3	3
7.	3B		, 0 /		3C	3C
8.	3C	/	3B		3A	3A
9.	3A /		3C		1A	1A
10.	0 /		3		1B/1	1C
11.	3		3A		1C	1B/1

Range	Scenario	SIM 1		SIM 2		SIM 3
1.	9	9		9		, 0
2.	10	10		5		1
3.	5	5		1		5
4.	6	6		10	/	9
5.	1	1		× 0 /		2
6.	2	2	/	6		6
7.	3	3	/	2		3
8.	4	4	/	3		7
9.	7	, 0 /		4		10
10.	0 //	7		7		4
11.	8	8		8		8

(Project – Alternatives), Federal road « Drautal », Carinthia, Austria.

Source: Macoun PANAM 2010

EXPLANATORY POWER FOR THE MODAL SPLIT

TRAVEL TIME

TRAVEL COSTS

Indicators, boundaries and methods

	Indicators	Temporal boundaries	Spatial boundaries	Methods
1	Number of vehicles	Status quo simulation	Street section	Counts in cross sections
2	Traffic amount	Mainly status quo simulation, linear forecasts or motorization rate	Corridor	Counts in cross sections, calculations
3	Traffic amount	Forecasts or motorization rate	Boundaries by distribution of trip length	Counts in cross sections, calculations
4	Modal split, person flow	Scenarios	Distribution of trip lengths	Simulation results, trip chains
5	Modal split	Scenarios	Distribution of trip lengths, ecological footprint	Simulation results, trip chains
6	Modal split, Energy	Scenarios	Settlement or regional area	Models
7	Energy, CO ₂	Scenarios	Global	Models

Scheme of Complexity of effects depending on the level of aggregetaion and the cause

Ratio of parameter of different planning variants compared to the mean of all values per assessment; B111 (Drautalstrasse »), Carinthia, Austria

THE HUMAN – ENVIRONMENT SYSTEM

From an analytical point of view each assessment comprises three components

- The neutral model (scheme of interrelations, indicators)
- The value system (assessment criteria such as expert opinions, limits)
- The value judgment (e.g. expressed in nominal, ordinal or cardinal scales) as a result of the joining of model and value system

COMPARISON of EIA and SEA

	Project - EIA	SEA
Object to	Single projects (e.g. street	Politics, plans and programs
examine	section)	(e.g. traffic concept)
Target	Optimization of single projects of one traffic mode (choice of traffic lines)	Optimization of traffic mode crossing solutions
Examined alternatives	Variants of location lines incl. Zero option	Variants of traffic solutions including several traffic modes
Frame of introduction	Local effects near the location line	Regional and global effects incl. sum and succeeding effects in the traffic system
Analysis of environmental impacts	Specific, project related statements - High grade of specification - Small scale	Principle and strategic statements - Little grade of specification - Higher scale

ANOTHER REASON OF URBAN SPRAWL Decline of land price gradient

INDIVIDUAL VERSUS SYSTEM

	System point of view	Individual point of view		
		objective	subjecktive	
Time	Constancy of time	(physical) Time	Assessment of time	
Space	Depends on speed	Habitat	Space of experience	
Energy	Total energy amount	Body energy	Weighted body energy	
(Causality)	(non renewable)		(e.g. Pulse, Stress)	

Comparison of System point of view with (objective und subjective) point of view of the individual represented for the problems of knowledge Time, Space and Energy/Causality (Kantsche Apriori)

Quelle: Riedl, Macoun

SAVING OF TIME IS WEIGHTED EXEPTIONALLY HIGH IN ECONOMIC THEORIES