

XXIVth World Road Congress Mexico 2011 Mexico City 2011.

ENVIRONMENTAL SUSTAINABILITY AS A PERFORMANCE MEASURE FOR ASSESSING PREVENTIVE MAINTENANCE POLICIES

Filippo Giustozzi

PhD candidate

filippo@vt.edu

CSTI–Center for Sustainable Transportation Virginia Tech Transportation Institute 3500, Transportation Research Plaza, Blacksburg, 24060, VA (USA) filippo.giustozzi@polimi.it

DIIAR – Transport Infrastructure P.zza Leonardo Da Vinci 32, Milan, 20133, ITALY

PRESENTATION OUTLINE

- Introduction
- Preventive Maintenance
- Environmental assessment
- Performance assessment
- Costs assessment
- Multi-attribute analysis
- Conclusions

INTRODUCTION

Including environment impacts as decision factors

State-of-the-Art

Environmental Certifications for buildings and products are wellestablished worldwide

Roads: "green" rating systems and tools are becoming popular

Decision Support Systems only focus on costs and performance of strategies Sustainability assessment of road pavements still has to be clearly defined and developed

Sustainability analyses are still considered as a stand-alone evaluation of a project

Pavement Management Systems do not consider environmental impacts

OBJECTIVES

Comparing Preventive Maintenance Strategies

ENVIRONMENTAL ASSESSMENT Life Cycle Carbon and Energy Assessment

ENVIRONMENTAL ASSESSMENT Life Cycle Carbon and Energy Assessment

equivalent carbon dioxide = CO₂e

How to convert a certain GHG into a unit of equivalent carbon dioxide? Global Warming Potential (GWP)

Industrial Designation	strial Designation Radiative			Glob	ng Potential e Horizon	for	
or Common Name (years)	Chemical Formula	Lifetime (years)	Efficiency (W m ⁻² ppb ⁻¹⁾	SAR [‡] (100-yr)	20-yr	100-yr	500-yr
Carbon dioxide	CO ₂	See below ^a	^b 1.4x10 ⁻⁵	1	1	1	1
Methane ^c	CH ₄	12 ^c	3.7x10 ⁻⁴	21	72	25	7.6
Nitrous oxide	N ₂ O	114	3.03x10 ⁻³	310	289	298	153
Substances controlled b	y the Montreal Protocol	1					
CFC-11	CCI3F	45	0.25	3,800	6,730	4,750	1,620
CFC-12	CCI ₂ F ₂	100	0.32	8,100	11,000	10,900	5,200
CFC-13	CCIF ₃	640	0.25		10,800	14,400	16,400
CFC-113	CCI2FCCIF2	85	0.3	4,800	6,540	6,130	2,700
CFC-114	CCIF ₂ CCIF ₂	300	0.31		8,040	10,000	8,730
CFC-115	CCIF ₂ CF ₃	1,700	0.18		5,310	7,370	9,990
Halon-1301	CBrF ₃	65	0.32	5,400	8,480	7,140	2,760
Halon-1211	CBrCIF ₂	16	0.3		4,750	1,890	575
Halon-2402	$CBrF_2CBrF_2$	20	0.33		3,680	1,640	503
Carbon tetrachloride	CCl ₄	26	0.13	1,400	2,700	1,400	435

ENVIRONMENTAL ASSESSMENT Life Cycle Carbon and Energy Assessment

"Embodied energy: the amount of energy consumed to produce a product. This includes the energy needed to mine or harvest natural resources and raw materials, and manufacture and transport finished materials." [U.S. Environmental

Protection Agency]

Diesel =

energ

Agency]	Consumption Facts Mass: 1,828.4 kg Expected Lifespan: 20 years				
	Embodied Energy				
	Total 1,828.4 kg	118,284,466,000 Joules			
	Steel 738.9 kg	32,289,930,000 Joules			
	Aluminium 142.9 kg	26,426,497,000 Joules			
	Plastic 155.6 kg	15,560,000,000 Joules			
	Allov steel 237.2 kg	15,180,800,000 Joules			
		7,170,933,000 Joules			
= 36.4 IVIJ	/liter or 42.8 GJ/t	4,130,000,000 Joules			
		3,165,460,000 Joules			
/ content	(heating value)	2,830,110,000 Joules			
	(nouting value)	2,457,000,000 Joules			
	Polyester 21.8 kg	2,132,040,000 Joules			
	Magnesium 5.0 kg	1,970,000,000 Joules			
	Stainless steel 34.0 kg	1,485,800,000 Joules			
	Glass 48.1 kg	1,058,200,000 Joules			
	Metal 19.5 kg	780,000,000 Joules			
	Paint 12.7 kg	659,130,000 Joules			
	Lead 20.4 kg	589,560,000 Joules			
	Zinc 4.5 kg	234,450,000 Joules			
	Transportation 13,904 km	6,355,654,730 Joules			
	Disposal (Landfill)	164,556,000 Joules			

ENVIRONMENTAL ASSESSMENT Impacts related to <u>materials</u>

Cradle-to-Grave approach

full Life Cycle Assessment from resource extraction ('cradle') to use and disposal phase ('grave').

Bitumen Reed to have a unique inventory of						
Bitumen e Crushed a	n & energ	28.8 9.9				
Pit-run ag		<u>y 101 1040</u>	<u>i materiais</u>	1.4		
Cement	1079.6	311.5	5900	847.1		
Quicklime	2500	-	9240	-		
Water	0.29	-	10	-		
Polymers – elastomers	3000	543.4	91440	36753.5		
Polymers – plastomers	1400	424.3	44667.3	51087.7		
Emulsifiers	600	52.4	63250	6010.4		

Cradle-to-Gate approach

ENVIRONMENTAL ASSESSMENT Impacts related to <u>equipment</u>

ENVIRONMENTAL ASSESSMENT Impacts related to <u>equipment</u>

$$F[l] = BSFC\left[\frac{g}{kW \cdot h}\right] \cdot P[kW] \cdot T[h] \cdot 1/\gamma\left[\frac{l}{g}\right]$$

Where:

Where:

F = fuel consumed,

 $T = time_{MULERS} \frac{Models}{MOdels} \frac{Prod.[m^2/h]}{P_engine[KW]} \frac{P_engine[KW]}{F[l/h]} \frac{F[l/h]}{F_{sqm}[l/m^2]} \frac{CO_2e[g/m^2]}{CO_2e[g/m^2]} \frac{Energy[MJ/m^2]}{Energy[MJ/m^2]}$

Caller Color Color

AP1000D	4082	166 44	41.0	0.010	g 26.63	0.362 kg
QIP6000 Z	//84g·($1.99_{122} - =$	= 31.3	000.013	33.9∓ Z	
DF145C	3673	153 12	38.2	0.010 9 0	27.53	0.374 ^L
F121C	2449	[EPA repor	t 420-	F-09-300	1] 33.44	0.454
Super1603	2449	100	26.5	0.011	28.68	0.390
Super1803	2857	130	33.1	0.012	30.70	0.417

 $\alpha = \text{specific arround of CO}_{2\text{engine}}^{\text{mixer}} \text{ truck}_{\text{engine}} during the combustion of a liter of diesel arrow of diesel fuel [U.S. EPA]$

186 41.7 0.0116 30.70 0.417 74 $0.99 = \text{oxid} \frac{M206}{M210} \text{ fact} \frac{3600}{3600}$ 74 224 42.4 0.0118 31.25 0.424 44/12 = ratioolecular weight of carbon the molecular weigh

PERFORMANCE ASSESSMENT Area-Under-Curve

Maintonanco stratogy	AuC	Performance
Maintenance Strategy	Area Under Curve	increase
ONLY_MAJOR_REHABILITATION	29.83	,
OVERLAY (1)_[@year 8]	37.31	+ 25.08 %
OVERLAY (2) _[@years 8 and 16]	42.45	+ 43.65 %
MICROSURFACING (1) _[@year 6] MICROSURFACING (2) _[@years 6 and 13]	33.03 40.74	+ 10.73 % + 36.57 %
SLURRY (1) _[@year 5]	32.91	+ 10.33 %
SLURRY (2) _[@years 5 and 12]	38.51	+ 29.10 %

COSTS ASSESSMENT Life Cycle Cost Analysis

PRICE LIST	VDOT
ANALYSIS PERIOD	50 years
DISCOUNT RATE	4 %
METHODS	PWC, EUAC

Maintenance strategy	PWC [\$/m ²]	EUAC [\$/m ²]
ONLY_MAJOR_REHABILITATION	107.87	5.02
OVERLAY (1)_ [@year 8]	87.80	4.09
OVERLAY (2) _ [@years 8 and 16]	88.05	4.10
MICROSURFACING (1) [@year 6]	87.90	4.09
MICROSURFACING (2) [@years 6 and 13]	88.89	4.14
SLURRY (1) _ [@year 5]	87.10	4.05
SLURRY (2) _ [@years 5 and 12]	87.44	4.07

OUTCOMES Life Cycle Analysis

	DM different strategies	Co	sts	Performance	Enviror	nment
	PM_different strategies	PWC [\$/m2]	EUAC [\$/m2]	AuC	energy [MJ/ m2]	CO₂e [g/m2]
Microsurfacing	(1 intervention per cycle) – yr. 6	87.90	4.09	33.03	808.78	58.45

HOW TO COMBINE THEM?

Multi-Attribute Approach Analysis

	Co	sts	Performance	Environment	
Only_Major_Rehab.	PWC [\$/m2]	EUAC [\$/m2]	AuC	energy [MJ/ m2]	CO₂e [g/m2]
	107.87	5.02	29.83	1154.84	86.21

MULTI-ATTRIBUTE APPROACH ANALYSIS Cost + Performance + Environment

Parameters Rescaling

COSTS

Since the "Only_Major_Rehabilitations" alternative was the most expensive, a maximum value of 1 was assigned to it. All the other strategies were scaled using a simple direct proportion.

$x_i = \frac{(PM_strategy_{i_cost} \cdot 1)}{Do_Nothing_{cost}}$

ENVIRONMENT

Since the "Only_Major_Rehabilitations" strategy was the most polluting, a maximum value of 1 was assigned to it. All the other strategies were scaled using a simple direct proportion.

MULTI-ATTRIBUTE APPROACH ANALYSIS Cost + Performance + Environment

Parameters Rescaling

PERFORMANCE

Since the "Only_Major_Rehabilitations" strategy has the maximum difference from an ideal performance trend (e.g., horizontal decay curve), a maximum value of 1 was assigned to it.

MULTI-ATTRIBUTE APPROACH ANALYSIS Cost + Performance + Environment

Parameters Rescaling

		Cos	ts	Performance	Enviro	nment
		PWC	EUAC	AuC	Energy	Carbon
Microsurfacing	(1 intervention per cycle) - 6	0.815	0.815	0.929	0.700	0.678
M icrosurfacing	(2 interventions per cycle) - 6 & 13	0.824	0.825	0.758	0.776	0.732
Thin overlay	(1 intervention per cycle) – 8	0.814	0.815	0.834	0.710	0.710
Thin overlay	(2 interventions per cycle) - 8 & 16	0.816	0.817	0.712	0.796	0.794
Slurry seal	(1 intervention per cycle) – 5	0.807	0.807	0.932	0.662	0.703
Slurry seal	(2 interventions per cycle) - 5 & 12	0.811	0.811	0.808	0.700	0.783
ONLY_MAJOR_	REHABILITATION		1		1	C

MULTI-ATTRIBUTE APPROACH ANALYSIS Representation & Automatization

		Volume
		(EUAC * AuC * Carb <mark>on)</mark>
Microsurfacing	(1 intervention every cycle) - 6	0,513
Microsurfacing	(2 intervention every cycle) - 6 e 13	0.458
Thin overlay	(1 intervention every cycle) - 8	0,482
Thin overlay	(2 intervention every cycle) - 8 e 16	0,462
Slurry seal	(1 intervention every cycle) - 5	0,529
Slurry seal	(2 intervention every cycle) - 5 e 12	0,513
Do_Nothing		1

Multi _ Approach _ Index = $w_1 \cdot X + w_2 \cdot Y + w_3 \cdot Z + ... + w_n \cdot N$

MULTI-ATTRIBUTE APPROACH ANALYSIS Optimization and Future Developments

CONCLUSIONS

- PM strategies were shown to be eco-effective, with a higher performance and lower costs over the life cycle.
- A large amount of emissions and energy could be saved by applying preventive maintenance plans on road pavements.
- The methodology provided is useful to compare strategies and alternatives considering multiple decision variables.
- PMS should be implemented in order to consider environmental impacts besides costs and performation

🐺 Virginia Tech

Thank you for your attention

