

Conserver la biodiversité dans le développement routier: une approche multi-niveaux

Agnès JULLIEN

- Ifsttar
- Head of a research unit
- agnes.jullien@ifsttar.fr

TC A1: WG2

Monitoring environmental impacts of roads

Prepared by Marguerite Trocmé

WG2

The contributors to the preparation of this report are:

Marguerite TROCMÉ (Switzerland) Chapter 5

Douglas SIMMONS (USA) Case study 9

Simon PRICE (UK) Case study 7

Niina JÄÄSKELÄINEN (Finland) Case study 6

Ana Cristina MARTINS (Portugal) Case study 2

Cristina MARUNTU (Romania)

Clara GRILO (Portugal) Case study 4

Dimitris MANDALOZIS (Greece) Case study 3

Ovidiu BURNEI (Romania)

Agnes JULLIEN and Denis FRANCOIS (France) Case study 5

Ole KIRK (Denmark)

Fernando MENDOZA (Mexico)

Viktoria REISS-ENZ (Austria) Case study 8

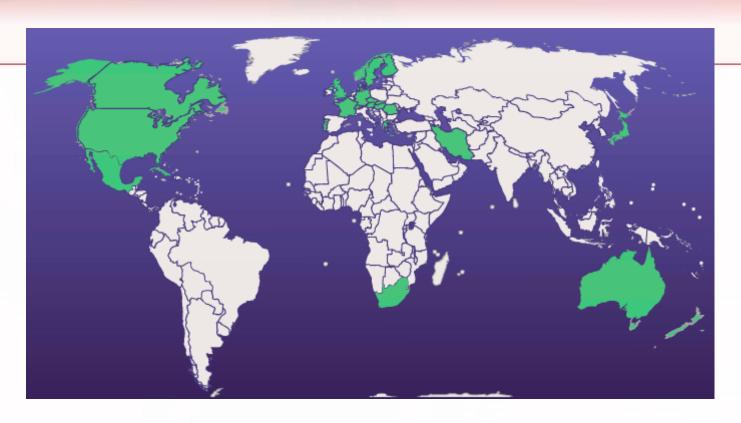
Rosario ROCIO (Portugal)

Daniela BURNEI (Romania)

Focus

- What type of monitoring is taking place in member states?
- Which environmental topics are covered?
- What is the legal framework?
- To what extent is the data used?
- How is monitoring taken into account in the development of future policies?
- How does monitoring feed back into the road planning and maintenance system?

Methodology


- Areas identified: water, air, noise, soil, biodiversity, air, landscape, ...:
- 2 questionnaires sent out to TCA1 (all working groups) asking about practice in each area:
- Literature search and review

•

- Resulting in :
- -choice of a case study for each area
- -international legislation
- monitoring practice
- -trends for monitoring

Participating countries

• Sent: 37 countries

Returned: 24 countries (Q1: 50%, Q2: 60%)

5 continents (mostly America and Europe)

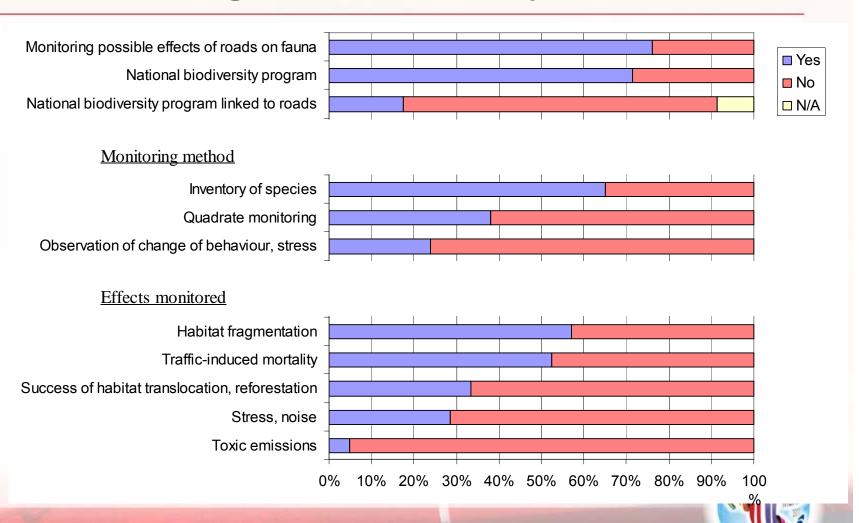
•2 questionnaires sent out asking about practice in each area

enviro	nmenta ain mon	l impa	cts of	roads	sent	on 2	1.01	09 to	the P	IARC A	1.2 men	itoring of nbers, we would untry on the topi	
Any co	ontribut	ion or I	respor	nse is	very	inten	estin	g for u	s and	d highly a	apprecia	ited.	
•	Count	ry:											
	Conta	ct pers	son:										
1. Air	r												
•	Do yo	u mon	itor Air	Quali	ty?								
	Which	Yes No Emiss		are mo	nitor	red in	you	r coun	try ?				
	NOx	NO2	SOx	S 02	03	со	нс	CO2	Pb	PM2.5	PM10	1	
												1	
•	What	are the	pollu	tant th	resh	olds?	?						
	NOx	NO2	SOx	S 02	03	СО	HC	CO2	Pb	PM2.5	PM10]	
	What	Ye: No	s, with	n ne thre	shol	ds ar	е ехі	eedec		e.g. UNE		HO)? there any obliga	tory
•	How is	s the n	nonito	red da	ta us	ed, v	vhat	is their	valu	e (any ir	fluence	on policy)?	
•	Do yo	u have	datal	anks	?								
		Yes											
•	Do yo	u use i		s to ca	lcula	ite ai	r qua	lity?					
	H	Ye: No											
2. Bio	odiver	sitv											
•		-	effect	s of ro	ads	on fa	una	being	moni	tored?			
	☐ Yes												
		No											
	Does	a natio	nal bi	odiven	sity r	nonit	oring	progr	am e	xist?			

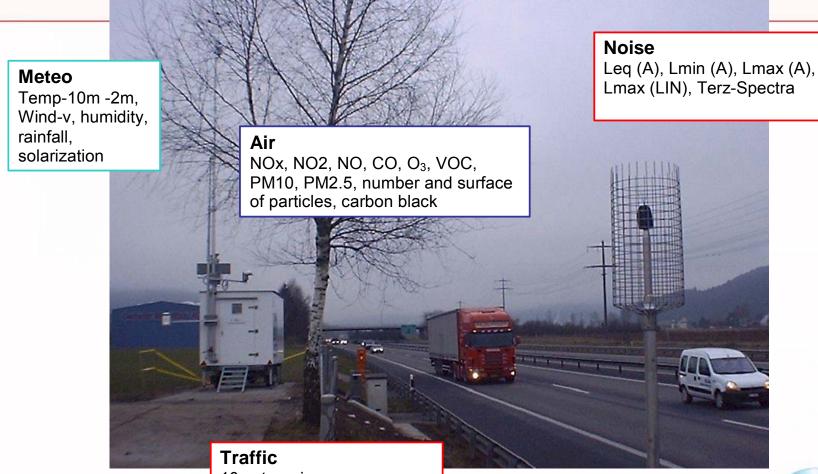
Federal roads office (FEDRO), Switzerland. Internal reference: 1375-0536

Results

- Overview of current practice
- Case studies
- Recommendations
- List of indicators



Overview of current practice


- · Air, water and noise are mostly monitored
 - → Public health concern
 - →Media coverage
 - →Impact is felt strongly and is immediate
- Areas less covered: soil pollution, waste management
 - →Less visible
 - →Long term impact

Monitoring of biodiversity

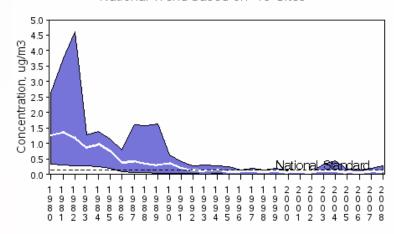
Case studies (Context, problem, monitoring, impacts of results)

10 categories, average v, Number PW, LKW

Influence of monitoring on policy

Finland salt in groundwater

- problem: chloride in groundwater
- Levels are rising
- Monitoring showed cause: De-icing salts
- Pollution risk database
- Change in policy:


Rationalisation of winter maintenance (optimal dosage, temporary actions,) early detection system

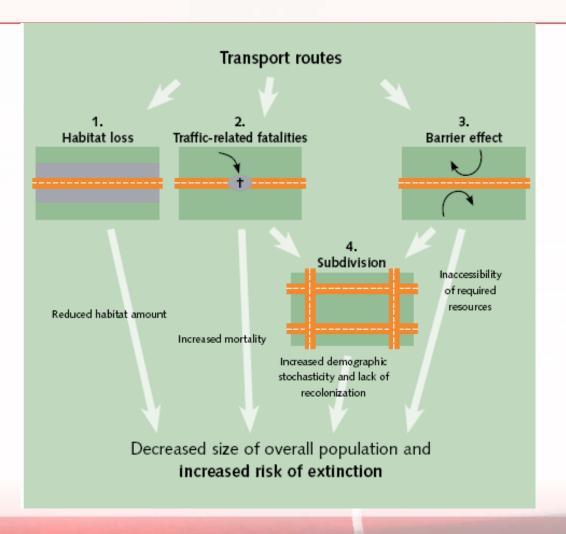
Monitoring shows effectivity of new policy

Lead Air Quality, 1980 - 2008

(Based on Annual Maximum 3-Month Average)
National Trend based on 19 Sites

1980 to 2008: 92% decrease in National Average

Lead in the environment

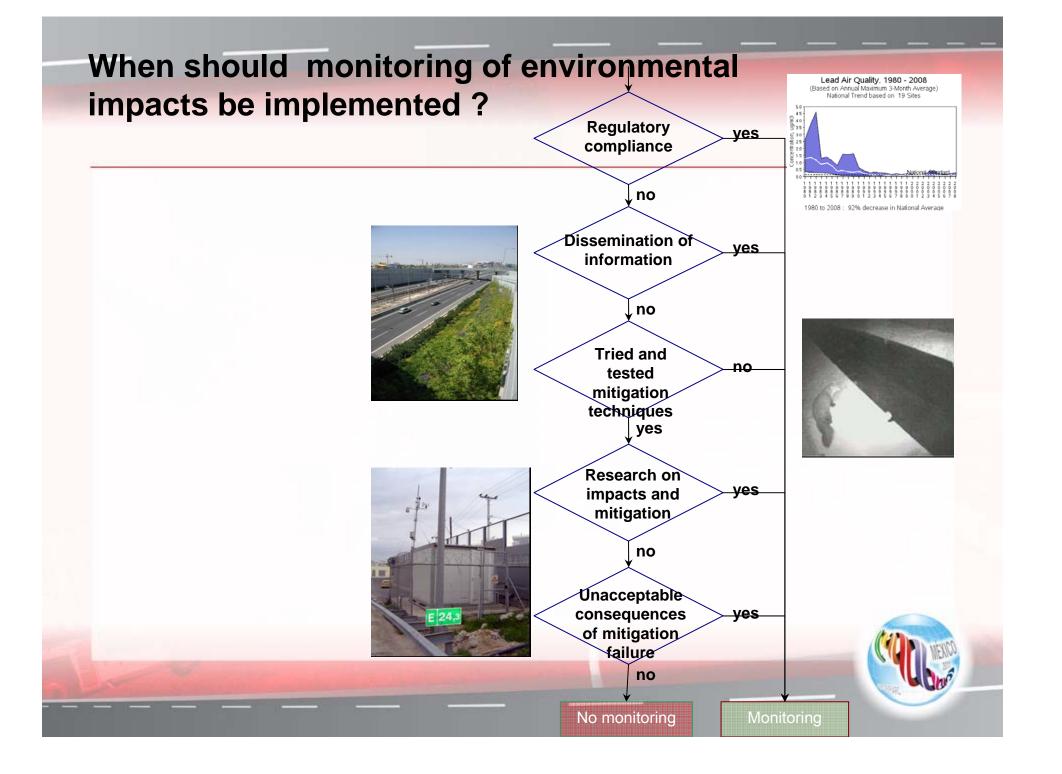

- High lead levels
- Increasing up to lead ban
- Cause: lead in fuel
- Change in policy:

Lead ban

Monitoring showed quick effectivity of policy

The four main effects of transport routes on animal populations

Conclusions – Recommendations


Monitoring objectives

- Assess threats, detect new environmental issues
- Give basis for planning and assessment of protection measures
- Offer a basis to legislation on environmental quality standards
- Measure progress towards environmental objectives
- Provide input for remedial actions or optimization of processes
- Evaluate the effectiveness of mitigation measures taken
- Detect changes in the environment, trend analysis
- Improve the efficiency of environmental mitigation measures.

Conclusions – Recommendations Implementation

- Planned as early as possible in the project
- •Part of the planning stage, included in the environmental impact assessment.
- •Implemented for a defined purpose, e.g. basis for status reports, deviation from targets, drafting of environmental objectives, environmental quality standards
- Cost-effectivity

Results – Indicators

Air pollution	At the network level: - CO2 (climate), contribution of the network to the national emissions - Pollutants: PM, NOx, 0zone - Traffic load monitoring (modelling of the fleet)
Noise	- Lden - Lday - Levening - Lnight - Number of people disturbed by noise - Number of houses disturbed by noise
Biodiversity	Fauna: - Number of wildlife casualties along roads (to detect black spots needing mitigation) Flora: - Follow up of changes in flora composition impacted on verges
Landscape	- Deforestation rate (area/time) Landscape fragmentation: - Effective mesh size - Effective mesh density - Area covered by the infrastructure
Water resources	- Percentage of network treated - Number of treated/untreated water evacuation points - Pollutants in effluents: TSS, Zn, Cu, HAP
Soil	- Surface of the country taken up by roads (percentage) - Area affected by the infrastructure

To know more...

Read the report ☺

PIARC TECHNICAL COMMITTEE A.1 WORKING GROUP 2

MONITORING OF ENVIRONMENTAL IMPACTS OF ROADS

Version 29 October 2010

1.08